DOI QR코드

DOI QR Code

Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice

Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향

  • Park, Sun-Ae (Dept. of Food and Nutrition, Yeungnam University) ;
  • Kim, Myung-Joo (Dept. of Food Science and Nutrition, Daegu Polytechnic College) ;
  • Jang, Joo-Yeun (Dept. of Food Science and Nutrition, Daegu Polytechnic College) ;
  • Choi, Myung-Sook (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Yeo, Ji-Young (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 박선애 (영남대학교 식품영양학과) ;
  • 김명주 (대구산업정보대학 식품영양과) ;
  • 장주연 (대구산업정보대학 식품영양과) ;
  • 최명숙 (경북대학교 식품영양학과) ;
  • 여지영 (경북대학교 식품영양학과) ;
  • 이미경 (순천대학교 식품과학부)
  • Published : 2006.09.01

Abstract

Our preliminary study showed that genistein and daidzein improved blood glucose level in type 2 diabetic mice by enhancing the glucose and lipid metabolism. The objective of this study was to evaluate whether genistein and daidzein are associated with alterations in antioxidant defense mechanism of type 2 diabetic mice. Male C57BL/KsJ-db/db (db/db) mice and age-matched non-diabetic littermates (db/+) were used in this study. The db/db mice were divided into control, genistein (0.02%, w/w) and daidzein (0.02%, w/w) groups. The relative weights of liver, epididymal adipose tissue and perirenal adipose tissue were significantly higher in the db/db group than in the db/+ group, whereas heart weight was lower. The genistein and daidzein supplement did not affect the organ weights in db/db mice. The blood glucose level was positively correlated with superoxide dismutase (SOD, r=0.380, p<0.05) and catalase (CAT, r=0.345, p<0.05) activities and negatively correlated with glutathione peroxidase (GSH Px, r= 0.404, p<0.05) activity in erythrocyte. Therefore, the erythrocyte SOD and CAT activities were significantly elevated in the db/db group compared to the db/+ group and the GSH-Px activity was lowered. However, the supplementation of genistein and daidzein reversed erythrocyte CAT and GSH-Px activities in type 2 diabetic mice. In this current study, the SOD activities in liver, kidney and heart were significantly not different between the groups. The CAT and GSH-Px activities in liver and GSH-Px activity in kidney were significantly higher in the db/db group than in the db/+ group, while the CAT activity in kidney, CAT and GSH-Px activities in heart were lowered. The supplementation of genistein and daidzein significantly attenuated the changes of CAT and/or GSH-Px activities in liver and heart. The supplementation of genistein and daidzein elevated GSH levels in kidney and heart compared to the db/db control group. The lipid peroxide levels in liver, kidney and heart were significantly lowered in the genistein and daidzein supplemented groups compared to the db/db control group. These results suggest that genistein and daidzein might be beneficial for the prevention of type 2 diabetic complication via suppressing changes of antioxidant enzymes activities with simultaneous reduction of lipid peroxidation.

제2형 당뇨 동물모델(C57BL/KsJ-db/db)을 대상으로 대두 이소플라본의 주성분인 genistein과 daidzein의 항산화효능을 검증하고자 5주령의 수컷 C57BL/KsJ-db/db 마우스와 그의 이형접합체인 C57BL/KsJ-db/+ 마우스를 2주간 환경에 적응시킨 후 비당뇨군(db/+), 당뇨대조군(db/db), genistein 급여군(db/db-genistein), daidzein 급여군(db/db- daidzein)으로 나누어 6주간 사육하였다. 실험동물의 간, 부고환지방과 신주변지방의 조직무게는 당뇨군(db/db)이 비당뇨군(db/+)에 비해 유의적으로 높았으나, 심장무게는 유의적으로 낮았다. Genistein과 daidzein 급여는 장기무게 변화에 영향을 미치지 않았다. 적혈구의 SOD와 CAT활성은 혈당과 양의 상관성을 보였으나 GSH-Px활성은 음의 상관성을 나타내었다. 따라서 SOD와 CAT활성은 db/db군이 db/+군에 비해 유의적으로 높은 반면, GSH-Px 활성은 유의적으로 낮았다. Genistein과 daidzein 급여로 db/db군의 증가된 CAT활성은 감소되었으며 GSH-Px활성은 높게 나타났다. 적혈구의 GSH함량은 당뇨군들이 비당뇨군에 비해 유의적으로 높았으나 genistein과 daidzein에 의한 영향은 관찰되지 않았다. 간, 신장 및 심장조직 내 SOD활성은 유의적인 변화가 없었으나 간조직 중 CAT와 GSH-Px활성과 신장조직 중의 GSH-Px활성은 db/db군이 db/+군에 비하여 유의적으로 높게 나타난 반면 신장조직 중의 CAT활성과 심장조직 중의 CAT와 GSH-Px활성은 낮았다. 그러나 genistein과 daidzein 급여는 고혈당으로 인한 조직 내 CAT와 GSH- Px활성을 유의적으로 개선하였다. 적혈구를 비롯하여 모든 조직 내 지질과산화물 함량은 db/db군이 db/+군에 비하여 유의적으로 높았으나 genistein과 daidzein 급여로 간, 신장과 심장조직 중의 지질과산화물 생성이 유의적으로 억제되었다. 이와 같이 genistein과 daidzein은 제2형 당뇨동물에서 고혈당으로 야기되는 적혈구와 조직 내 항산화효소 변화를 완화하고 간, 신장 및 심장조직의 지질과산화물을 낮추는 것으로 관찰됨으로써 이들의 항산화작용을 통한 당뇨 합병증을 예방할 것으로 사료된다.

Keywords

References

  1. Song YS, Kwon TY. 2000. Hypocholesterolemic effect of soybean and soy products. Food Industry and Nutrition 5(2): 36-41
  2. Potter SM. 1998. Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr Rev 56: 231-235 https://doi.org/10.1111/j.1753-4887.1998.tb01754.x
  3. Hermansen K, Sondergaard M, Hoie L, Carstensen M, Brock B. 2001. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care 24: 228-233 https://doi.org/10.2337/diacare.24.2.228
  4. FDA. 1999. Food labeling health claims: soy protein and coronary heart disease. Food and Drug Administration. Final rule. Fed Regist 64: 57700-57733
  5. Kerckhoffs DA, Brouns F, Hornstra G, Mensink RP. 2002. Effects on the human serum lipoprotein profile of beta-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. J Nutr 132: 2494-2505
  6. van der Schouw YT, Sampson L, Willett WC, Rimm EB. 2005. The usual intake of lignans but not that of isoflavones may be related to cardiovascular risk factors in U.S. men. J Nutr 135: 260-266
  7. Bhathena SJ, Velasquez MT. 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76: 1191-1201 https://doi.org/10.1093/ajcn/76.6.1191
  8. Jayagopal V, Albertazzi P, Kilpatrick ES, Howarth EM, Jennings PE, Hepburn DA, Atkin SL. 2002. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 25: 1709-1714 https://doi.org/10.2337/diacare.25.10.1709
  9. Wiseman H. 2000. The therapeutic potential of phytoestrogens. Expert Opin Investig Drugs 9: 1829-1840 https://doi.org/10.1517/13543784.9.8.1829
  10. Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R. 2004. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53: 166-172 https://doi.org/10.2337/diabetes.53.2007.S166
  11. Aoki K, Saito T, Satoh S, Mukasa K, Kaneshiro M, Kawasaki S, Okamura A, Sekihara H. 1999. Dehydroepiandrosterone suppresses the elevated hepatic glucose-6- phosphatase and fructose-1,6-bisphosphatase activities in C57BL/KsJ-db/db mice: comparison with troglitazone. Diabetes 48: 1579-1585 https://doi.org/10.2337/diabetes.48.8.1579
  12. Lee SM, Bustamante S, Flores C, Bezerra J, Goda T, Koldovsky O. 1987. Chronic effects of an $\alpha$-glucosidase inhibitor (Bay O 1248) on intestinal disaccharidase activity in normal and diabetic mice. J Pharmacol Exp Ther 240: 132-137
  13. Park SA, Choi MS, Cho SY, Seo JS, Jung UJ, Kim MJ, Sung MK, Park YB, Lee MK. 2006. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sciences 79: 1207-1213 https://doi.org/10.1016/j.lfs.2006.03.022
  14. Rufer CE, Kulling SE. 2006. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 54: 2926-2931 https://doi.org/10.1021/jf053112o
  15. American Institute of Nutrition. 1977. Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. J Nutr 107: 1340-1348 https://doi.org/10.1093/jn/107.7.1340
  16. McCord JM, Fridovich I. 1969. Superoxide dismutase: an enzymatic function for erythrocuperine (hemocuperin). J Biol Chem 224: 6049-6055
  17. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  18. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  19. Abei H. 1974. Catalase. In Methods of enzymatic analysis. Bergmeyer HU, ed. Academic Press, New York. p 673-684
  20. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169
  21. Ellman GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  22. Tarladgis BG, Pearson AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agric 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
  23. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  24. Aasum E, Hafstad AD, Severson DL, Larsen TS. 2003. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52: 434-441 https://doi.org/10.2337/diabetes.52.2.434
  25. Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS. 2002. Cardiac function and metabolism in type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol 283: H949-H957 https://doi.org/10.1152/ajpheart.00226.2001
  26. Clemens MR, Waller HD. 1987. Lipid peroxidation in erythrocytes. Chem Phys of Lipids 45: 251-268 https://doi.org/10.1016/0009-3084(87)90068-5
  27. Rolo AP, Palmeira CM. 2006. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212: 167-178 https://doi.org/10.1016/j.taap.2006.01.003
  28. Costagliola C, Menzione M. 1990. Effect of vitamin E on the oxidative state of glutathione in plasma. Clin Physiol Biochem 8: 140-143
  29. Oztasan N, Taysi S, Gumustekin K, Altinkaynak K, Aktas O, Timur H, Siktar E, Keles S, Akar S, Akcay F, Dane S, Gul M. 2004. Endurance training attenuates exercise- induced oxidative stress in erythrocyte in rat. Eur J Appl Physiol 91: 622-627 https://doi.org/10.1007/s00421-003-1029-6
  30. Suttorp N, Toepfer W, Roka L. 1986. Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Am J Physiol 251: C671-C680 https://doi.org/10.1152/ajpcell.1986.251.5.C671
  31. Diamond JR, Ding G, Frye J, Diamond IP. 1992. Glomerular macrophages and the mesangial proliferative response in the experimental nephrotic syndrome. Am J Pathol 141: 887-894
  32. Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Isimer A. 2001. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem 34: 65-70 https://doi.org/10.1016/S0009-9120(00)00199-5
  33. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR. 1996. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci 90: 255-260 https://doi.org/10.1042/cs0900255
  34. Vijayalingam S, Parthiban A, Shanmugasundaram KR, Mohan V. 1996. Abnormal antioxidant status in impaired glucose tolerance and non insulin-dependent diabetes mellitus. Diabet Med 13: 715-719 https://doi.org/10.1002/(SICI)1096-9136(199608)13:8<715::AID-DIA172>3.0.CO;2-Z
  35. Bhatia S, Shukla R, Madhu SV, Gambhir JK, Prabhu KM. 2003. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem 36: 557-562 https://doi.org/10.1016/S0009-9120(03)00094-8
  36. Dyntar D, Sergeev P, Klisic J, Ambuhl P, Schaub MC, Donath MY. 2006. High glucose alters cardiomyocyte contacts and inhibits myofibrillar formation. J Clin Endocrinol Metab 91: 1961-1967 https://doi.org/10.1210/jc.2005-1904
  37. Song Y, Wang J, Li XK, Cai L. 2005. Zinc and the diabetic heart. Biometals 18: 325-332 https://doi.org/10.1007/s10534-005-3689-7
  38. Lelli SM, San Martin de Viale LC, Mazzetti MB. 2005. Response of glucose metabolism enzymes in an acute porphyria model. Role of reactive oxygen species. Toxicology 216: 49-58 https://doi.org/10.1016/j.tox.2005.07.016

Cited by

  1. Effect of Tofu Manufactured from Lipoxygenase-free Genotypes Soybean on the Fecal Lipid Level and Hepatic Antioxidant Enzyme Activity in Rat Fed a High Fat-cholesterol Diet vol.49, pp.1, 2015, https://doi.org/10.14397/jals.2015.49.1.175
  2. Anti-diabetic Activity of Germinated Ilpum Rough Rice Extract Supplement in Mice vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.339
  3. Effects of Phytoestrogens on Glucose Metabolism in C57BL/KsOlaHsd-db/db Mice vol.44, pp.4, 2011, https://doi.org/10.4163/kjn.2011.44.4.275
  4. Effects of Cheonggukjang Powder Made with Black Foods on Liver Function and Lipid Composition in Streptozotocin-induced Diabetic Rats vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.699
  5. Effect of Soybeans, Chungkukjang, and Doenjang on Blood Glucose and Serum Lipid Profile in Streptozotocin-induced Diabetic Rats vol.41, pp.5, 2012, https://doi.org/10.3746/jkfn.2012.41.5.621
  6. Effects of Soybean and DJI Chungkukjang Powder on Blood Glucose and Serum Lipid Reduction in db/db Mice vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1086
  7. Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.549
  8. 스트렙토조토신으로 유도된 당뇨 마우스에서 Monascus purpureus을 이용한 발효 쑥의 기억력 개선 효과 vol.49, pp.5, 2006, https://doi.org/10.9721/kjfst.2017.49.5.550
  9. Changes in Isoflavone Composition of Soybean According to Processing Methods vol.50, pp.4, 2021, https://doi.org/10.3746/jkfn.2021.50.4.403