항만하역 재해분석에 관한 연구

- 인천항을 중심으로 -

남 영 우 교수 한국항만연수원

1. 서론

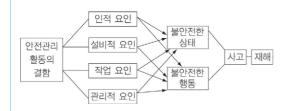
우리는 지금 "동북아 물류중심 국가건설"이라는 국가정책 실현을 위해 신항만건설 및 확장 등 항 만을 통한 물류 강국으로의 도약을 적극적으로 시 도하고 있으며, 항만의 중요성이 그 어느 때보다 도 더욱 강조되고 있는 시점이다. 실제로 우리나 라는 총 무역량의 99.7%가 항만을 통해서 이루어 지고 있으며, 특히 항만하역은 항만산업에 있어서 도 항만물류의 핵심 분야라고 할 수 있다.

또한 항만은 육상운송과 해상운송이 만나는 접속점임과 동시에 복합운송체계의 국제종합물류기지로써 국가의 중추적인 기반시설임에도 불구하고항만이라는 특수성과 폐쇄성, 그리고 안전에 대한전반적인 이해와 관심부족 등으로 항만하역 분야의 재해율이 타 산업에 비해 아직도 상당히 높게

나타나고 있는 실정이다. 따라서 항만하역재해를 재해요목별 빈도 및 상호간의 교차분석을 함으로 써 항만하역재해의 주요워인을 규명하고자 한다.

본 연구에서는 항만하역재해의 심층적인 분석을 위해 2001년에서 2003년까지 인천항에서 발생한 항만하역재해에 대한 자료를 입수하여 이를 13개의 재해요목(화물, 재해 발생장소, 상해종류, 재해발생형태, 재해정도, 상해부위, 작업단계, 기인물, 인적 불안전한 행동, 물적 불안전한 상태, 발생 시간별, 근속년수별, 나이별 등)으로 분류하여 이를 SPSS 통계 프로그램을 이용, 각 요목별재해빈도수 및 재해 요목간의 교차분석을 세부적으로 실시하였다.

2. 산업재해와 항만하역의 특수성


2.1 산업재해의 발생형태

산업재해 발생은 어떤 단순한 것이 아니고 직접 원인과 간접원인의 복합적인 결합에 의하여 사고 가 일어나고, 그 결과 인적 피해나 물적 피해를 가 져온 상태를 재해로 정의한다.(미국안전보건법) 특히 재해요인 중 인적 불안전한 행동이 88%, 물 적 불안전한 상태(기계설비의 결함)가 10%, 천재 지변이 2%를 차지한다. 따라서 재해발생요인의 98%가 인적 불안전한 행동과 물적 불안전한 상태 로 인한 재해로써 이 두 가지 위험요인만 제거한 다면 거의 모든 재해를 예방할 수 있다는 결론에 도달할 수 있다. 재해 발생형태는 크게 단순자극 형, 연쇄형, 복합형 등 3가지 유형으로 분류할 수 있다.

항만하역 재해발생은 단순한 형태의 재해요인보다는 항만의 특수성, 다종·다양한 화물 취급, 인적 불안전한 행동요소(불안전한 적재·적하, 불안전한 자세·동작, 감독 및 연락 불충분), 물적 불안전한 상태(불안전한 작업방법·공정, 불안전한 작업환경, 불량상태 방치), 이원적 노무구조에 따른안전관리의 어려움 등 복합적인 위험요소가 서로 얽혀서 재해가 발생하는 경우가 대부분인 특징을 갖고 있다.

2.2 재해발생의 흐름

재해는 약 98%가 직접원인인 인적 불안전한 행동과 물적 불안전한 상태로 인해 발생되는데 이는다시 재해발생 기본요인 4M(Man, Machine, Media, Management)으로 구분할 수 있으며, 결국 이런 요인들을 안전관리단계에서 사전에 발견하여 조치를 취함으로써 사고나 재해로 이어지는흐름을 방지할 수 있다.

[그림 2-1] 재해 발생 흐름도

2.3 항만하역의 특수성

- (1) 항만하역은 선박의 입출항 예측이 불가능하고, 계절적 · 우발적 물동량 변화가 극심하여 노동 수요의 파동성과 불규칙성을 나타낸다.
- (2) 항만하역 근로자의 이원적인 고용형태(노 : 항운노동조합, 사 : 하역회사)

항만하역의 주요 장비 및 기기 조작원은 하역회 사가 직접 상용으로 고용하고, 단순 노무직은 노 동조합이 노무공급권을 전담함으로써 하역시설 · 장비의 관리 · 운영의 주체가 각기 다르고, 고용관 계가 하역장소 및 시간에 따라 수시로 변함으로써 효율적이고 일관성있는 안전관리가 어렵다.

(3) 항만하역 작업환경이 열악함.

하역작업의 대부분이 옥외·노천 또는 밀폐된 선창 내부에서 이루어지므로 혹한·혹서 등의 열 악한 자연환경과 분진·조명·소음 등의 불량한 작업환경에서 선박의 접안계획에 따라 작업을 강 행해야 하고, 조명이 불량한 선창 내부에서의 야 간작업, 분진이 발생하는 환기 불량 장소에서 시 멘트, 곡물, 철광석, 석탄 등을 취급해야 한다.

(4) 취급화물 종류가 다종·다양함.

항만하역은 취급화물의 종류가 대단히 다종·다양하고, 중량·장척 및 유해위험화물을 하역한다.

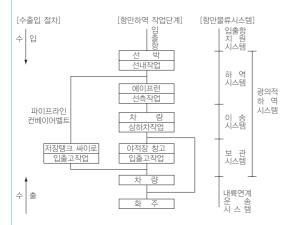
(5) 근로시간 제한없는 주 · 야 계속적인 작업

항만하역작업은 일반적으로 타 산업에 비해 육체적 중노동이고, 빠른 하역작업의 요구와 선박회전율제고를 위해 반단위의 1일 2교대 방식의 연속적인 단순 협업작업이며, 근로시간 제한없이주·야로 계속적인 작업을 해야한다.

(6) 흔들리는 선박에서 부두내 각종 하역중장비 (하역·이송)의 복잡한 흐름 속에서, 현수된 화물의 낙하와 충돌을 피하면서 끊임없이 하역작업을 수행해야 한다. 따라서 항만하역은 타 산업과 달리 다종·다양한 화물과 선박, 화물별·선박별 다양한 작업방법, 노무구조 이원화로 인한 안전관리의 어려움, 중량·장척 및 유해위험화물 취급, 각종 하역중장비와 인력의 복잡한 혼합작업, 분진·소음·공해·불량한 조명 등 열악한 작업환경일뿐 아니라, 타산업에 비해 아직도 노동강도가 매우 높고 불규칙한 특징을 갖고 있다.

2.3.1 항만에서의 하역작업체계

항만 내에서의 화물 흐름은 기본적으로 운송, 보관, 포장, 하역(이송 포함), 정보 및 관리(항해지 원) 등의 6가지 기능으로 구성된다. 항만의 활동 형태는 해상운송과 내륙운송의 결합으로 이루어 진다. 그리고 이러한 중추적인 역할을 수행하는 부분이 하역, 운송 및 보관기능이고 포장, 정보, 관리 기능은 하역, 운송, 보관기능을 원활하게 하 는 부수기능으로써의 역할을 담당한다. 항만운송 사업법 제2조 및 제3조에 의하면, 항만운송사업 에는 항만하역사업, 검수사업, 감정사업 및 검량 사업이 있다.


여기서 항만하역은 항만 안에서 항만하역업자가 하주 또는 선박운항업자의 위탁을 받아서 선박에 의하여 운송된 화물을 선박으로부터 인수 또는 하주에게 인도하거나, 선박에 의하여 운송될 화물을 항만 안에서 선박에 인도 또는 하주로부터 인수하는 행위와 이에 따른 선행 또는 후속행위로 정의되어 있다. 협의의 항만하역작업이란 항만내의 부두, 야적장, 창고, 싸이로 등의 장소에서 선박, 차량, 컨베이어 등의 운송수단에화물을 적재 또는 양하하는 작업을 말하고, 광의의 항만하역은 항만 내에서 이루어지고 있는 이송작업 및 보관작업까지를 포함한다고 볼 수 있다. 항만하역작업단계는 [표 2-1]과 같이 선내,부선,육상,예·부선운송작업 등 크게 4가지로분류한다.

[표 2-1] 항만하역작업단계

단 계	작 업	내 용
선내작업	양하	본선내 화물을 부선내 또는 부두위에 내려놓고 고리(hook)를 풀기까지의 작업
	적하	부선내 또는 부두위의 고리가 걸어진 화물을 본선내에 적재하기까지의 작업

	_, _,			
단 계	작 업	내 용		
부선작업	부선양륙	안벽에 계류된 부선에 적재되어 있는 화물을 양륙하여 운반구 위에 운송가능한 상태로 적재하기까지의 작업		
구간기日	부선적재	운반구에 적재되어 있는 화물을 내려서 안벽에 계류되어 있는 부선에 운송 가능한 상태로 적재하기까지의 작업		
	상차	선내작업이 완료된 화물의 고리를 푼 다음 운반구 위에 운송 가능한 상태로 적재하기까지의 작업		
육상작업	하차	운반구위에 적재되어 있는 화물을 내려서 본선측에 장치하여 선내작업을 할 수 있을 때까지의 작업		
404 1	출고상차	창고 또는 아적장에 장치되어 있는 화물을 출고하여 온반구 위에 운송 가능한 상태로 적재하기까지의 작업		
	하차입고	운반구 위에 적재되어 있는 화물을 내려서 창고나 아적장에 보관 가능한 상태로 장치하기까지의 작업		
	본선선측 물양장	본선선측에 계류된 부선에 운송 가능한 상태로 적재된 화물을 운송하여 물양장에 계류하기까지의 작업, 또는 물양장에 계류된 부선에 운송 가능한 상태로 적재된 화물을 운송하여 본선 선측에 계류하기까지의 작업		
예 · 부선 운송 작업	물양장 작업	물양장에 계류된 부선에 운송 가능한 상태로 적재된 화물을 운송하여 물양장에 계류하기까지의 작업		
	일괄작업	전용부두에 설치된 특수장비를 사용하여 ① 선박에서 창고나 야적장까지의 하역 작업 ② 일반부두에서의 선내작업 ③ 이송 작업 및 창고나 야드에 장치되기까지의 과정이 연속적으로 이루어지는 작업		

[그림 2-2]는 선박의 입출항에서 화주에게 화물이 인도되는 과정을 작업단계 및 물류 시스템적으로 분류하여 도해한 것이다.

[그림 2-2] 항만하역 작업단계도

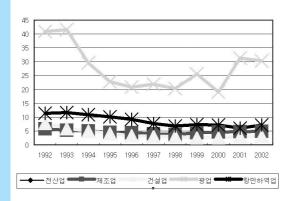
2.3.2 항만하역 장비현황

항만은 부두별·취급화물별·작업환경에 따라 하역 및 수송장비들이 인력과 혼합되어 복합적으로 하역작업을 한다. 항만에서 주로 사용하는 장비는 선박에 장착된 크레인 종류의 하역장비외에 육상하역장비, 컨테이너 취급장비 및 야드 장치장비, 양곡 및 산물취급장비, 각종 차량계 운반장비등 복잡하고 다양하게 혼합되어 취급과 운행, 운영과 관리측면에 있어 상당한 안전상의 주의를 요한다.

2.4 항만에서의 하역작업인력 투입방법

항만하역 작업인력의 투입 규모는 선박의 크기 (작업 가능한 선창의 수)에 의해 결정되며, 1개 작업반의 규모는 화물의 종류, 본선 데릭의 수, 투입하역장비의 수와 성능, 작업자의 숙련도 등 여러복합적인 요소로 결정된다. 항만별 노무배치 방식은 부두별·작업반별 노동력 수급의 불균형과 작업량의 편차발생으로 고용 및 소득 안정성을 저하시키기 때문에 각 지역 항만노조는 이런 문제점을해소하기 위해 크게 부두별·작업장별 전속배치제와 노동풀(Pool)제의 두가지 작업할당방식을 취하고 있다.

[표 2-3] 품목별·작업 단계별·홀드별 작업투입 인력현황


품목	작업 단계	작업방식	투입현황	적정 인력	시간당 생산성		
원목	선내	육상크레 인와이어 작업	신호수 1명 윈치맨 1명 선내 5명	7명	선박의 노후화 대부분 본선기어가 없음.		
(소송)	선측		육상 2명 반장 1명	3명	• 400∼500톤/시프트 • 노조측 자료 :		
	계			10명	600~700톤		
	선내	본선데릭	윈치맨 1명 신호수 1명 선내 4명	6명	• 200~300톤/시프트 • 2,000~3,000톤 소형선		
고철	선측		육상 2명 반장 1명	3명	• 데릭의 리치가 짧고 힘이 약해		
	계			9명	거의 사용 불능		
컨테	선내	스프레더 작업(H/C)	윈치맨 1명 신호수 1명 선내 4명	6명	• H/C작업보다 다소 저하		
이너	선측		육상 2명 반장 1명	3명	(핀 교체 작업)		
	계			9명			
	선내	육상 크레인 작업	원치맨 1명 신호수 1명 선내 4명	6명	• 800톤/시프트 • 노조측 자료 :		
잡화	선측		육상 2명 반장 1명	3명	300~400톤 • 5,000톤급 선형(중국선)		
	계			9명	~~~~~/ ~~~~~/		
사료	선내	E/X Grab	위치맨 1명 신호수 1명 선내 4명	6명	• 550톤/시프트 노후선박으로		
부원료	선측	호퍼	육상 2명 반장 1명	3명	생산성 부진		
	계			9명			
양곡	선내	컨테이너 크레인	5명	5명	600톤/시간노조측 자료 :		
07	선측 계	U/L		5명	양곡 – 700~800톤, 박 – 300~500톤		

품목	작업 단계	작업방식	투입현황	적정 인력	시간당 생산성
합판	선내	본선 데릭 작업	윈치맨 1명 신호수 1명 선내 2명	4명	• 400톤/시프트 • 5,000~6,000톤급
80	선측	상차	육상 2명 반장 1명	3명	선박
	계			7명	
철재 (H-	선내	본선 데릭 작업	윈치맨 1명 신호수 1명 선내 2명	4명	 280톤/시프트 15,000~30,000톤급 선박
beam, Pipe, Coil)	선측		육상 2명 반장 1명	3명	회주별 선별 작업으로 작업효율이 저조함철재의 종류 및
COII)	계			7명	수출선에 따라 작업 효율이 다름.

3. 항만하역 재해현황 및 재해분석

3.1 항만하역 재해현황

3.1.1 주요 산업별 · 년도별 재해 도수율 추이 [그림 3-1]은 주요 산업별 · 년도별 재해 도수율 추이를 나타낸 것인데 2002년도 주요 산업별 재해도수율은 광업이 30.25로 전년대비 3.4% 감소하였으나 항만하역업을 포함한 타산업은 증가를 나타냈다. 그러나 항만하역업은 아직도 광업 다음으로 재해도수율이 높아 타산업에 비해 재해유발산업임을 알 수 있다.

[그림 3-1] 주요 산업별 · 년도별 재해 도수율

3.1.2 년도별 항만하역 재해 발생 추이

[표 3-1]은 1992년부터 2003년까지의 항만하역 재해발생추이와 도수율을 나타낸 것이다.

[표 3-1] 년도별 항만하역 재해 발생 추이

구분	1992	1993	1994	1995	1996	1997
사망	20	14	24	18	13	13
중경상	812	826	777	735	681	517
계	832	840	801	753	694	530
근로자수	27,766	27,967	27,967	28,584	28,615	26,437
도수율	11.44	11.68	10.93	10.05	9.26	7.65
구분	1998	1999	2000	2001	2002	2003
구분 사망	1998	1999 6	2000 15	2001 7	2002 12	2003
사망	6	6	15	7	12	4
사망 중경상	6 413 419	6 415	15 418	7 352	12 390	4 357

- ※ 중경상자는 4일 이상의 휴무 또는 가료를 요하는 자
- ※ 근로자수는 항만하역업체의 상용 직원 및 항운노조 원을 합한 수
- ※ 도수율 = (재해발생건수/연근로시간수)×10⁶ : 연근 로시간 100만 시간당 재해발생건수

재해도수율은 1993년을 기준으로 할 때 11.68에서 2003년에 6.12로 약 48% 감소하였고, 2002년도 7.1로 전년대비 13.8% 감소하였다. 재해자수는 1993년 826명에서 지속적으로 감소하여 2003년도에는 357명으로 감소하였다.

3.2 항만하역 재해분석

3.2.1 재해분석방법

본 연구에서는 항만하역 재해를 총 13개의 재해

요목으로 분류, SPSS 통계 프로그램을 이용하여 각 요목별 재해 빈도수 및 교차분석을 세부적으로 실시하였다. [표 3-2]는 재해요목으로 분류한 세 부내용을 정리한 것이다.

빈도분석은 한 개의 변수에 대한 빈도를 측정하는 방법이고, 교차분석은 두 개 이상의 변수를 결합하여 자료의 빈도를 살펴보는 분석기법으로 두개 이상의 행과 열을 갖는 교차표를 작성하여 단순히 교차빈도를 집계할 뿐만 아니라 두 변수간의독립성 여부를 판정하는 독립성 검정(x² 검정 : Chi-square test)도 수행할 수가 있다. 본 연구에서는 각 변수간 유의수준(α = 0.05) 양측검정으로하여 α≤0.05이면 유의한 경우로써 두 변수가 서로 종속적(또는 연관적)이라고 해석하였고 반대로 α〉0.05이면 기각하는 경우로 두 변수가 서로 독립적이라고 해석하였다.

3.2.2 빈도 분석

취급 화물별로는 원목, 철재, 컨테이너, 잡화 순이고 재해발생장소는 주로 선내에서 64%가 발생하여 선내작업에 있어 특별한 주의를 요하고 있다. 상해종류는 골절과 타박상이 92% 이상을 차지하고 재해발생형태는 전도, 협착, 추락, 낙하 순이며 상해부위는 주로 발, 손, 다리, 허리, 팔 순으로 분석되고 있다.

작업단계도 선내와 선측이 약 86% 이상을 차지하는 것은 하역장비를 이용하여 중량·장척화물, 위험물, 잡화, 산화물 등 다종·다양한 화물을 취급하는 항만하역의 특수성을 잘 나타내고 있으며 기인물로는 각종 화물과 하역용구가 주를 이루고 있어 화물별 포장상태 및 작업방법과 와이어로프, 스링 등 각종 하역도구에 대한 작업시작 전 안전점검이 절실히 요구되고 있는 실정이다

[표 3-2] 재해요목별 세부내용

No	재해요목	세부 내용
1	취급화물	각재, 고철, 광석, 괴탄, 냉동물, 모래, 무연탄, 부원료, 수산물, 시멘트, 쌀, 알미늄괴, 양곡, 원당, 원목, 잉고트, 자동차, 잡화, 철재, 컨테이너, 코일, 파이프, 기타
2	재해발생장소	선내, 선측, 야적장
3	상해종류	골절, 동상, 부종, 찔림, 타박상, 절단, 중독, 찰과상, 창상, 화상, 청력장애, 시력장애, 뇌진탕, 익사, 피부병, 기타
4	재해발생형태	추락, 전도, 충돌, 낙하, 붕괴, 협착, 감전, 폭발, 파열, 화재, 무리한 동작, 이상온도 접촉, 유해물 접촉, 기타
5	재해정도	경상, 중상, 사망
6	상해부위	두부, 팔, 손, 다리, 발, 옆구리, 눈, 가슴, 배, 등, 골반, 귀, 코, 허리, 어깨, 목, 머리, 턱, 전신, 사망
7	작업단계	선내, 선측, 직상차 \cdot 직선적, 예부선, 상 \cdot 하차, 야적, 입출고, 기타
8	기인물	본선설비 하역설비, 예부선, 차량, 구조물, 작업대, 하역용구, 적재물, 화물, 복표, 묶음철사, 받침대, 동력기관, 정비도구, 작업환경, 선박 로링, 기타
9	인적 불안전한 행동	안전장치 기능제거, 불안전한 속도조작, 권한 없이 행한 조작, 불안전한 장비의 사용, 불안 전한 적재·적하, 불안전한 자세·동작, 안전 복장 미착용, 잡담·당황·놀림·장난, 감독 및 연락 불충분, 운전중인 기계에 주유, 기타
10	물적 불안전한 상태	안전보호장치 결함, 불량상태 방치, 불안전한 설계, 위험한 배열, 불안전한 조명, 불안전한 환경, 불안전한 복장, 불안전한 방법·공정, 안전 표지 미부착, 선박의 로링
11	발생시간별	0~6Al, 6~9Al, 9~12Al, 12~15Al, 15~18Al, 18~21Al, 21~24Al
12	근속년수별	1년 미만, 1년 이상 3년 미만, 3년 이상 5년 미만, 5년 이상 15년 미만, 15년 이상 20년 미만, 20년 이상 30년 미만, 30년 이상
13	나이별	20대, 30대, 40대, 50대, 60대

특히 재해의 약 88% 이상을 차지하는 인적 불안전한 행동에 있어서는 불안전한 적재·적하와 불안전한 자세·동작이 약 76%를 차지하므로 표준작업방법과 안전점검, 작업자의 근무태도 및 정신교육 등이 중요한 이슈로 부각되고 있다. 물적 불안전한 상태로는 불안전한 작업방법·공정과 불안전한 작업환경이 약 90%를 차지하므로 표준 작업이 활성화될 수 있는 하역작업의 여건 조성이시급한 것으로 사료된다.

재해발생 시간별로는 09~12시와 12~15시가 약 50%를 차지하므로 이 시간대에 특별한 안전주의를 요하며, 나이별로는 40대, 50대, 30대 순으로 재해가 발생하고 있다. [표 3-3]은 인천항의 항만하역재해를 13개 요목별로 빈도 분석한 결과를 요약한 것이다.

[표 3-3] 항만하역 재해 요목별 빈도분석 요약

No	재해요목	세부 내용
1	취급화물	① 원목(19.2%) ② 철재(18.7%) ③ 컨테이너 (11.6%) ④ 잡화(8.1%) ⑤ 부원료(4.5%), 모래(4.5%) ⑥ 합판(4%), 고철(4%)
2	재해발생장소	① 선내(64.1%) ② 선촉(24.2%) ③ 아적장(11.65%)
3	상해종류	① 골절(51.5%) ② 타박상(40.9%) ③ 절단(5.1%)
4	재해발생형태	① 전도(23.7%) ② 협착(20.7%) ③ 추락(17.7%) ④ 낙하(14.6%)
5	재해정도	① 중상(57.6%) ② 경상(40.4%) ③ 사망(1.5%)
6	상해부위	① 발(30,3%) ② 손(19.7%) ③ 다리(15.2%) ④ 허리(6.1%) ⑤ 팔(5.6%)
7	작업단계	① 선내(66.75%) ② 선촉(19.2%) ③ 아적(7.1%) ④ 상하차(5.1%)
8	기인물	① 기타(27,3%) ② 화물(24.7%) ③ 하역용구(16,2%) ④ 작업환경(11.1%)

No	재해요목	세부 내용
9	인적 불안전한 행동	① 불안전한 적재·적하(40.4%) ② 불안전한자세·동작(35.9%) ③ 감독 및 연락 불충분(10.1%)
10	물적 불안전한 상태	① 불안전한 작업방법·공정(62.6%) ② 불안전한 작업환경(26.8%) ③ 불량상태방치(6.1%)
11	발생시간별	① 09~12시(29,3%) ② 12~15시(19,7%) ③ 15~18시(14,6%) ④ 21~24시(13,6%)
12	근속년수별	① 5~15년(41.9%) ② 1~3년(17.7%) ③ 20~30년(17.2%)
13	나이별	① 40대(35.9%) ② 50대(26.3%) ③ 30대(25.3%)

3.2.3 교차분석

재해의 다발 원인인 인적 불안전한 행동과 물적불안전한 상태의 교차분석은 인적요소 중불안전한 적재·적하에서는 물적불안전한 작업방법·공정이 전체 재해의 92.5%를 차지하는 것으로 나타났고, 인적불안전한 자세 및 동작에서는 물적불안전한 환경,불안전한 방법·공정 순으로 나타났다. 따라서 인적 요소인불안전한 적재·적하와불안전한 자세·동작이 물적 요소인불안전한 작업방법·공정과불안전한 환경과 교차됐을 때 재해의 위험이 상당히 높아지는 것을 알 수 있으며이에 대한 근본대책이 강구되어야 할 것으로 사료된다.

[표 3-4] 재해 요목별 교차분석내용

No	재해요목	세부 내용
1	취급화물* 재해발생형태	약 78%가 전도, 협착, 추락, 낙하로 인한 것 - 원목: 낙하와 전도(42%), 붕괴(18%), 협착(16%), 추락(13%) - 철재: 낙하(30%), 협착(22%), 전도(19%) - 컨테이너: 전도(43%), 추락(30%), 낙하(9%), 협착(9%), 충돌(9%)

	-11-11-0-5	
No	재해요목	세부 내용
2	취급화물* 작업단계	화물별로는 원목, 철재, 컨테이너 순으로 재해가 발생하며 이중 약 86%가 선내(67%)와 선측 (19%)에서 집중적으로 발생한다.
3		 선내: 전도(28%), 협착(20%), 낙하(17%), 추락(17%), 붕괴(7%) 선측: 협착(25%), 추락(19%), 낙하(17%), 전도(15%)
4	재해발생장소* 상해부위	- 선내 : 발(32%), 다리(20%), 손(15%), 팔(8%) - 선측 : 발(38%), 손(31%), 다리(6%), 팔(4%)
5	재해발생장소* 상해종류	총 재해 중 골절과 타박상이 전체의 93%를 차지한다. - 선내 : 골절(50%), 타박상(44%), 절단(5%) - 선측 : 골절(67%), 타박상(27%), 절단(4%)
6	재해정도* 상해부위	- 경상 : 발(30%), 손(22%), 허리(12%) - 중상 : 발(34%), 다리(20%), 손(20%)
7	작업단계* 물적 불안전한 상태	직업단계별로 물적 불안전한 상태의 주원인으로는 불안전한 작업방법 · 공정(63%), 불안전한 작업 환경(27%), 불량상태 방치(6%) 등 이다. - 선내 : 불안전한 작업방법 및 공정(59%), 불안전한 작업환경(30%) - 선측 : 불안전한 작업방법 및 공정(74%), 불안전한 작업환경(21%)
8	물적 불안전한 상태* 재해정도	불안전한 작업방법 및 공정 : 중상(57%), 경상(41%)불안전한 작업환경 : 중상(52%), 경상(45%)
9	물적 불안전한 상태* 재해발생형태	- 불안전한 작업방법 및 공정 : 협착(25%), 낙하(19%), 추락(18%), 전도(13%) - 불안전한 작업환경 : 전도(51%), 추락(19%), 붕괴(13%), 협착(11%)
10	물적 불안전한 상태* 상해부위	불안전한 작업방법 및 공정 : 발(31%), 손(27%), 다리(13%)불안전한 작업환경 : 발(41%), 다리(17%), 팔(13%)
11	인적 불안전한 행동* 재해발생 형태	전체 재해 중 불안전한 적재 · 적하(40%), 작업자의 불안전한 자세 · 동작(36%), 감독 및 연락 불충분(10%)순으로 되어 있다. - 불안전한 적재 · 적하 : 낙하 · 협착(45%), 추락(18%), 충돌(14%), 붕괴(14%) - 불안전한 자세 · 동작 : 불안전한 작업환경 (55%), 불안전한 작업방법 · 공정(39%)
12	인적 불안전한 행동* 물적 불안전한 상태	

No	재해요목	세부 내용
13	작업단계* 물적 불안전한 상태	 선내: 불안전한 작업방법 · 공정(59%), 불안전한 작업환경(30%) 선측: 불안전한 작업방법 · 공정(74%), 불안전한 작업환경(21%)
14	취급회물* 인적 불안전한 행동	 원목: 불안전한 적재·적하(37%), 불안전한 자세·동작(29%) 철재: 불안전한 적재·적하(59%), 불안 전한 자세·동작(16%) 컨테이너: 불안전한 자세·동작(57%), 불안전한 적재·적하(17%) 잡화: 불안전한 자세·동작(56%), 불안전한 적재·적하(38%)
15	작업계* 인적 불안전한 행동	 선내: 불안전한 자세·동작(39%), 불안전한 적재·적하(37%) 선측: 불안전한 적재·적하(53%), 불안전한 자세·동작(16%), 감독·연락 불충분(16%) 야적: 불안전한 자세·동작(64%)

4. 결론

산업재해의 98%가 인적 · 물적 요인에 의해 발생하는데 인천항 재해자료에 대한 교차분석 결과는 인적 불안전한 행동의 11가지 요소 중 불안전한 적재 · 적하와 불안전한 자세 · 동작으로 인한 재해가 전체의 67.1%가 되고 물적 불안전한 상태의 10가지 요소 중 불안전한 작업방법 · 공정과 불안전한 작업환경으로 인한 재해가 전체의 8.9%를 차지한다.

따라서 항만하역 재해요소 중에서 인적 요인인불안전한 적재·적하와 불안전한 자세·동작 그리고 물적 요인인불안전한 작업방법·공정과 불안전한 작업환경 등의 재해요인들을 항만작업현장에서 사전에 발견하여 제거한다면 총재해의 76%는 예방이 가능하다는 결론이고 이와 같은 원인분석에 따라서 항만하역재해예방과 재해감소에 대한 대책이나 방안에 대해서는 향후에 집중적으로 연구할 필요가 있다고 사료된다.