초록
The purpose of this study was to analyze the effects of three different types of preparatory movement(squat, countermovement and hopping) in sideward responsive propulsion movement. 7 healthy subjects performed left and right side movement task by external output signal. 3D kinematics were analyzed The results were followed First, performance time in the countermovement and hopping conditions was shorter(10-20%) than that in the squat condition. The hopping condition that is more related to pre-stretch showed excellent performance. Second, time difference between after turned on the external signal and until take off was the primary factor in performance results among movement conditions. The preparatory phase before the propulsive phase in the squat condition produced more time than that in other conditions. The hopping condition showed the most short time in both the preparatory and the propulsive phase, therefore it was advantage for performance result Third, significant difference was not found in take-off velocity among movement conditions although there was difference of the time required in the propulsive phase. The maximum acceleration in the propulsive phase was larger in order of the hopping. countermovement, and squat condition. The countermovement and hopping conditions showed high take-off velocity although the propulsive phase in those conditions was shorter than that in squat condition. The pre-stretch by preparatory countermovement was considered as the positive factor of producing power in concentric contraction. Fourth, the hopping condition produced large angular velocity of joints. In hopping condition, large amount of moment for rotation movement was revealed in relatively short time and it was considered to cause powerful joint movements. In conclusion, the hopping movement using countermovement is advantage of responsive propulsion movement. It is resulted from short duration until take off and large amount of joint moment and joint power in concentric contraction by pre-stretch.