DOI QR코드

DOI QR Code

Anatomical Differentiation and Photosynthetic Adaptation in Brown Algae

  • Published : 2005.09.01

Abstract

The photosynthetic parameters of dark- adapted minimum fluorescence (Fo) and maximum quantum yield of charge separation in PSII (Fv/Fm) were measured in transverse sections of eight species of marine Phaeophyceae (species of Laminariales, Fucales, Desmarestiales, Chordariales) using pulse amplified modulation (PAM) fluorometry. Within each transverse section fluorescence was measured in three regions corresponding to outer cortical and meristoderm cells, inner cortical cells and innermost medullary cells. Minimum fluorescence declined from 19-74% (mean of 39%) from outermost to innermost cells. Maximum quantum yield varied from 0.51-0.59 in outermost cell layers and this was reduced to 0.23-0.40 in innermost cell layers, with an average reduction of 50%. Despite the reduction Fo in medullary cells (inner), medullas of all species showed maximum quantum yields consistent with a photosynthetic role in carbon fixation. These results show that medullary cells of complex brown algae have more than a role in structure, storage or transport, and may also provide an important role in carbon fixation.

Keywords

References

  1. Arnold K.E. and Manley S.L. 1985. Carbon allocation in Macrocystis pyrifera (Phaeophyta): intrinsic variability in photosynthesis and respiration. J. Phycol. 21: 154-167 https://doi.org/10.1111/j.0022-3646.1985.00154.x
  2. Bold H.C. and Wynne M.J. 1985. Introduction to the algae, 2nd ed. Prentice-Hall, Englewood Cliffs, New Jersey, USA
  3. Christensen T. 1980. Algae: a taxonomic survey, Fasc. 1. Aio Trykas, Odense, Denmark
  4. Clayton M.N. and Ashburner C.M. 1990. The anatomy and ultrastructure of 'conducting channels' in Ascoseira mirabilis (Ascoseirales, Phaeophyceae) .Bot. Mar. 33: 63-70 https://doi.org/10.1515/botm.1990.33.1.63
  5. Davies J.M., Ferrier N.C. and Johnston C.S. 1973. The ultrastructure of the meristoderm of the hapteron of Laminaria. J. Mar. BioI. Ass. U.K. 53: 237-246 https://doi.org/10.1017/S0025315400022232
  6. Fagerberg W.R., Moon R. and Truby E. 1979. Studies on Sargassum III. A quantitative ultrastructural and correlated physiological study of the blade and stipe organs of S. filipendula. Protoplasma 99: 247-261 https://doi.org/10.1007/BF01275799
  7. Fritsch F.E. 1945. The structure and reproduction of the algae. Volume II. Cambridge University Press, Cambridge, UK
  8. Grevby C., Axelsson L. and Sundquist C. 1989. Lightindependent plastid differentiation in the brown alga Laminaria saccharina (Phaeophyceae). Phycologia 28: 375-384 https://doi.org/10.2216/i0031-8884-28-3-375.1
  9. Katsaros C. and Galatis B. 1985. Ultrastructural studies on thallus development in Dictyota dichotoma (Phaeophyta, Dictyotales). Br. Phycol. J. 20: 263-276 https://doi.org/10.1080/00071618500650271
  10. Kilar J.A., Littler M.M. and Littler D.S. 1989. Functionalmorphological relationships in Sargassum polyceratium (Phaeophyta): phenotypic and ontogenetic variability in apparent photosynthesis and dark respiration. J. PhycoI. 25: 713-720 https://doi.org/10.1111/j.0022-3646.1989.00713.x
  11. King R.J. and Schramm W. 1976. Determination of photosynthetic rates for the marine algae Fucus vesiculosus and Laminaria digitata. Mar. BioI. 37: 209-213 https://doi.org/10.1007/BF00387605
  12. Lobban C.S. and Harrison P. J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, UK
  13. McCully M.E. 1966. Histological studies on the genus Fucus. I. Light microscopy of the mature vegetative plant. Protoplasma 62: 287-305 https://doi.org/10.1007/BF01248267
  14. Oates B.R. 1988. Water relations of the intertidal saccate alga Colpomenia peregrina (Phaeophyta, Scytosiphonales). Bot. Mar. 31: 57-63 https://doi.org/10.1515/botm.1988.31.1.57
  15. Ruffer U., Nultsch W. and pfau J. 1978. Untersuchungen zur lichtinduzierten Chromatophorenverlagerung bei Fucus vesiculasus. Helgol. Wissens. Meeresunters. 31: 333-346 https://doi.org/10.1007/BF02189486
  16. Schreiber U. 1998. Chlorophyll fluorescence: new instruments for special applications. In: Garab G. (ed.), Photosynthesis: mechanisms and effects. Vol. V. Kluwer, Dortrecht, The Netherlands. pp. 4253-4258
  17. Schreiber U., Bilger W. and Neubauer C. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze H.D. and Caldwell M.M. (cds.), Ecophysiology of photosynthesis. Ecological studies, Vol. 100. Springer-Verlag, Berlin, Germany. pp. 49-70
  18. Schmitz K. and Srivastava L.M. 1974. Fine structure and development of sieve tubes in Laminaria groenlandica Rosenv. Cytobiologie 10: 66-87
  19. Schmitz K. and Srivastava L.M. 1975. On the fine structure of sieve tubes and the physiology of assimilate transport in Alariamarginata. Can. J. Bot. 53: 861-876 https://doi.org/10.1139/b75-104
  20. Schmitz K. and Srivastava L.M. 1976. The fine structure of sieve elements of Nereocystis liitkeana. Am. J. Bot. 63: 679-693 https://doi.org/10.2307/2441831

Cited by

  1. Structure and development of air bladders in Fucus and Ascophyllum (Fucales, Phaeophyceae) vol.45, pp.5, 2006, https://doi.org/10.2216/05-62.1
  2. Effect of GeO2on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae) vol.27, pp.2, 2012, https://doi.org/10.4490/algae.2012.27.2.125
  3. Pronounced gradients of light, photosynthesis and O2consumption in the tissue of the brown algaFucus serratus vol.207, pp.3, 2015, https://doi.org/10.1111/nph.13396
  4. Fluorescence responses of photosynthesis to extremes of hyposalinity, freezing and desiccation in the intertidal crust Hildenbrandia rubra (Hildenbrandiales, Rhodophyta) vol.45, pp.6, 2006, https://doi.org/10.2216/05-43.1
  5. Molecular iodine emission rates and photosynthetic performance of different thallus parts of Laminaria digitata (Phaeophyceae) during emersion vol.233, pp.4, 2011, https://doi.org/10.1007/s00425-010-1334-3
  6. Ecophysiology of photosynthesis in macroalgae vol.113, pp.1-3, 2012, https://doi.org/10.1007/s11120-012-9768-z
  7. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.321
  8. Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae) vol.60, pp.2, 2013, https://doi.org/10.1134/S1021443713020192
  9. The unique giant Irish moss (Chondrus crispus) from Basin Head: Health assessment in relation to reference sites on Prince Edward Island pp.1916-2804, 2018, https://doi.org/10.1139/cjb-2018-0081
  10. Isolation and characterization of a high-growth-rate strain in Pyropia yezoensis induced by ethyl methane sulfonate vol.30, pp.4, 2018, https://doi.org/10.1007/s10811-018-1426-1