DOI QR코드

DOI QR Code

CFD/CAA Hybrid 기법을 이용한 뒷전에서 음향파의 산란모사

Simulation of Trailing Edge Scattering Using Linearized Euler Equations with Source terms

  • 박용환 (서울대학교 기계항공공학부 대학원) ;
  • 빈종훈 (서울대학교 기계항공공학부 대학원) ;
  • 정철웅 (한국표준과학연구원 물리표준부 음향진동그룹) ;
  • 이수갑 (서울대학교 기계항공공학부)
  • 발행 : 2005.07.01

초록

본 연구에서는 뒷전, 전단류와 초기교란의 상호작용에 의한 불안정파의 생성 기제의 분석과 뒷전 산란현상을 고차의 전산공력음향학을 이용하여 모사하였다. 수치적 알고리즘은 Hybrid 기법에 기초하였으며, Simple Linearized Euler Equation과 Full Linearized Euler Equation의 결과를 비교를 통해 정상류 구배항이 불안정파의 생성에 중요한 역할을 함을 볼 수 있었다. 또한 Full Navier-Stokes Equation을 이용한 결과와 비교함으로써, Full Linearized Euler Equation은 뒷전의 초기 근접장에서 불안정파를 해석하는데 있어서 Full Navier-Stokes Equation 보다 효율적임을 알 수 있다.

In this study, the main focus is the simulation of acoustic wave scattering in trailing edge and the analysis of the generation mechanism of instability wave by the interaction of trailing edge, shear flow and initial disturbance. The numerical algorithm is based on CFD/CAA hybrid method with high-order computational aeroacoustic method. It is found that steady mean flow gradient terms play a crucial role on the generation of instability wave through the comparison of simulations of Simple Linearized Euler Equation and Full Linearized Euler Equation. Through the comparison with the results of Full Navier-Stokes Equation, it is reasonable and efficient to use the Full Linearized Euler Equation in the initial generation mechanism of the instability wave near the trailing edge.

키워드

참고문헌

  1. Dziomba, B. and Fiedler, H. E., 'Effect of initial conditions on two-dimensional free shear layers', Journal of Fluid Mechanics, Vol. 152, 1985, pp.419-442 https://doi.org/10.1017/S0022112085000763
  2. Barone, M. F. and Lele, S. K., 'A numerical technique for trailing edge acoustic scattering problems', Journal of AIAA, 2002
  3. Tim Colonius and Lele, S. K., 'Computational aeroacoustisc: progress on nonlinear problems of sound generation', Progress in Aerospace Science, Vol. 40, 2004, pp. 345-416 https://doi.org/10.1016/j.paerosci.2004.09.001
  4. Christophe Bogey., Christophe Bailly. and Daniel Juve., 'Computation of Flow Noise Using Source Terms in Linearized Euler's Equations', Journal of AIAA, Vol. 40, No.2, 2002, pp. 235-243 https://doi.org/10.2514/2.1665
  5. Tam, C.K.W., 'Computational Aero -acoustics: Issues and Methods', Journal of AIAA, Vol. 33, 1995, pp. 1788-1796 https://doi.org/10.2514/3.12728
  6. Tam, C.K.W. and Webb, J.C., 'Dispersion-Relation-Preserving finite difference schemes for computational acoustics,' Journal of Computational Physics, Vol. 107, 1993, pp. 262-281 https://doi.org/10.1006/jcph.1993.1142
  7. Cheong, C. and Lee, S., 'Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics', Journal of Computational Physics, Vol. 174, 2001, pp. 248-276 https://doi.org/10.1006/jcph.2001.6904
  8. Tam, C. K. W. and Dong. Z., 'Radiation and Outflow Boundary Conditions for Direct Computation of Acoustic and Flow Disturbances in a Nonuniform Mean Flow', Journal of Computational Acoustics, Vol. 4, No. 11, 1996
  9. Tam, C. K. W. and Dong. Z., 'Wall boundary conditions for high order finite difference schemes in computational aeroacoustics', Theoretical Compututational Fluid Dynamics, Vol. 6, 1994, pp.303-322 https://doi.org/10.1007/BF00311843
  10. Christophe Bogey. and Christophe Bailly., 'Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases', Acta acustica united with acustica, vol. 88, 2002
  11. Bin, J. and Cheong, C. and Lee, S., 'Optimized Boundary Treatment for Curved Walls for High-order Computational Aero -acoustics Schemes', Journal of AIAA, Vol. 42, No.2, 2004, pp. 414-417 https://doi.org/10.2514/1.9105
  12. Roe, P. L., 'Approximate Riemann Solvers, Parameter Vectors and Difference Schemes', Journal of Computational Physics, Vol. 43, 1981, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  13. http://www.math.fsu.edu/CAA4/pdfs/Category4-problem2.pdf
  14. Baron, M.F., 'Receptivity of Compressible Mixing Layers', Ph. D Thesis, Stanford University, 2003