DOI QR코드

DOI QR Code

중수소 분사각에 따른 불화중수소 화학레이저의 성능향상에 관한 수치적 연구

Numerical Study of DF Chemical Laser Performance with Variations of D2 Injection Angles

  • 발행 : 2005.01.01

초록

환형 노즐을 갖는 불화중수소 화학레이저 시스템에서 레이저빔 발진은 불소 원자와 중수소 분자의 혼합을 통해서 얻어진다. 초음속 연소기에서 연료의 분사각이 성능에 큰 영향을 미친다는 연구에 근거하여, 혼합률을 증진시키기 위한 연구로서 주유동과 일정각을 가지고 분사되는 중수소의 불소 원자와의 혼합률 증진에 대한 수치적 연구를 수행하였다. 중요 결과로서 중수소 분사각(10, 20, 40도)이 커짐에 따라서 최대 소신호 광학이득계수와 레이저 공동내의 압력이 상승하게 된다. 또한, 광학이득계수와 공동압력의 관점에서 불화중수소 화학레이저 발진을 위한 최대 성능은 20~40도 사이의 중수소 분사각에서 나타난다.

In the chemical laser system with a radial expansion nozzle array, the laser beam generation is achieved by mixing F atom from supersonic nozzle and $D_{2}$ molecule from holes of round-bended supply line. Based on that the fuel injection angle with main stream has a great influence of performance on supersonic combustor, the effects of $D_{2}$ injection angles with the main F flow on mixing enhancement are numerically investigated. The results are discussed by comparison with three cases of $D_{2}$ injection angles; $10^{o}$, $20^{o}$ and $40^{o}$ with the main flow direction. Major results reveal that as the $D_{2}$ injection angle increases, the maximum small signal gains and the static pressure in the laser cavity become higher. Consequently, the $D_{2}$ injection angle between $20^{o}$ and $40^{o}$ is recommended as an optimized geometric parameter in consideration of both of high gains and low cavity pressure.

키워드

참고문헌

  1. Park, J. S. and Baek, S. W., 'Effects of Pressure Ratio on Population Inversion in a DF chemical Laser Cavity', Journal of Quantitative Spectroscopy & Radiative Transfer, Vol.92, 2005, pp.31-49 https://doi.org/10.1016/j.jqsrt.2004.07.009
  2. Spencer, D. J., Mirels, H. and Durran, D. A., 'Performance of CW HF Chemical Laser with $N_2$ or He Diluent', Journal of Applied Physics, Vol. 43, No. 3, 1972, pp.1151-1157 https://doi.org/10.1063/1.1661228
  3. Hess, L. D., 'HF Chemical Laser Studies: Use of $MoF_6$ to Increase Reaction Rates in $H_2-F_2$ Mixtures', Journal of Applied Physics, Vol. 43, No. 3, 1972, pp.1157-1160 https://doi.org/10.1063/1.1661229
  4. Hua, W., Jiang, Z. and Zhao, Y., 'Nozzle Design in CW Hydrogen Fluoride Chemical Laser', SPIE, Vol. 2889, 1996, pp.135-140 https://doi.org/10.1117/12.253272
  5. Eklund, D. R. and Gruber, M. R., 'Study of a Supersonic Combustor Employing an Aerodynamic Ramp Pilot Injector', AIAA 99-2249, 1999
  6. Fuller, R. P., Wu, P. K., Nejad, A. S. and Schetz, J. A., 'Comparison of Physical and Aerodynamic Ramps as Fuel Injectors in Supersonic Flow', Journal of Propulsion and Power, Vol. 14, No. 2, 1998, pp.135-145 https://doi.org/10.2514/2.5278
  7. King, W. S. and Mirels, H., 'Numerical Study of a Diffusion-Type Chemical Laser', AIAA Journal, Vol. 10, No. 12, 1972, pp.1647-1654 https://doi.org/10.2514/3.6697
  8. Yee, H. C., 'Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications', Journal of Computational Physics, Vol. 68, 1987, pp.151-179 https://doi.org/10.1016/0021-9991(87)90049-0
  9. Yee, H. C., 'A Class of High Resolution Explicit and Implicit Shock-Capturing Methods,' NASA TM 101099
  10. Jameson, A. and Turkel, E., 'Implicit Schemes and LU Decompositions', Mathematics of Computation, Vol. 37, No. 156, 1981, pp.385-397 https://doi.org/10.2307/2007433
  11. Park, J. S., Study of Population Inversion and Laser Beam Generation in DF Chemical Laser System, Ph.D. Thesis, Division of Aerospace Engineering, KAIST, 2005
  12. Gross, R. W. F. and Bott, J. F., Handbook of Chemical Lasers, John Wiley & Sons, New York, 1976