DOI QR코드

DOI QR Code

반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition

  • Lee, S.H. (Department of Animal Science, Korea National Agricultural College, RDA) ;
  • Seo, I.J. (Woo Tech Co.)
  • 발행 : 2005.10.31

초록

본 연구는 액상 DFM(Bacillus spp.)을 완전혼합사료(실험 1) 및 다양한 비율의 starch와 cellulose에 적용(실험 2) 하였을 때, 반추위내 발효와 섬유소분해효소활성에 미치는 영향을 평가하기 위해 in vitro 배양을 24시간동안 실시하였다. 실험 1의 처리구는 완전혼합사료에 액상 DFM 0%(대조구), 0.025%, 0.05%로 각각 첨가하였다. 실험 1에서, 0.025%구는 배양 6, 9시간에서 대조구와는 유의한 차이가 없었으나, 0.05%구보다는 유의하게 낮은 결과를 보였다(P<0.05). 암모니아질소농도와 휘발성지방산농도는 액상 DFM에 의하여 영향을 받지 않았다. 하지만, A:P비율은 DFM의 적용으로 배양 24시간에 대조구에 비하여 0.05%구에서 유의한 증가를 나타내었다(P<0.05). 액상 DFM적용에 의한 섬유소분해효소활력은 전반적으로 유의한 효과가 나타나지 않았지만, CMCase는 배양 6시간에 대조구에 비하여 유의한 증가를 나타내었다(P<0.05). 하지만, xylanase는 배양 12시간의 0.05%구에서 오히려 액상 DFM의 적용으로 유의하게 감소하였다(P<0.05). 반추위내 건물소실율은 액상 DFM의 첨가수준에 의해 유의한 차이가 나타나지 않았다. 실험 2는 다양한 비율(90:10, 70:30, 50:50, 30:70, 10:90)의 starch와 cellulose에 액상 DFM을 각 비율에 대하여 대조구(0%)와 첨가구(0.025%)로 나누어 반추위액을 이용하여 배양하였다. 반추위내 pH는 액상 DFM의 첨가로 유의한 영향을 받지 않았고, starch의 비율이 증가함에 따라 부분적으로 유의하게 감소하였다(P<0.05). 암모니아질소농도는 액상 DFM의 첨가와 starch 및 cellulose의 비율에 의하여 유의한 영향을 받지 않았다. 하지만, 배양 9시간의 70:30비율에서 액상 DFM첨가구가 35.65mg/dL의 암모니아질소농도를 나타내어 대조구의 65.05mg/dL에 비하여 유의하게 감소하였다(P<0.05). 휘발성지방산농도는 70:30비율의 6시간 배양에서 액상 DFM구가 대조구에 비하여 유의한 증가를 나타내었다(P<0.05). 액상 DFM의 첨가는 CMCase에는 전반적으로 유의한 영향을 미치지 않았다. 그러나 xylanase에는 90:10, 30:70 및 10:90구에서 부분적인 유의성이 인정되었다. 본 연구결과로부터, 액상 DFM의 적용은 in vitro 발효성상과 섬유소분해효소활성을 유의적으로 향상시키지 않았고, 사료의 조성에 따라 그 효과는 다양하게 나타나 일관성이 없는 것으로 평가되었다.

This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

키워드

참고문헌

  1. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC
  2. Arambel, M. J. and Wiedmeier, R. D. 1986. Effect of supplemental Saccharomyces cerevisiae and/or Aspergillus oryzae on rumen fermentation. J. Dairy Sci. 69(Suppl. 1):188.(Abstr.)
  3. Bach, A., Yoon, I. K., Stern, M. D., Jung, H. G. and Chester-Jones, H. 1999. Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture. J. Dairy Sci. 82:153-160 https://doi.org/10.3168/jds.S0022-0302(99)75219-7
  4. Beauchemin, K. A., Morgavi, D. P., McAllister, T. A., Yang, W. Z. and Rode, L. M. 2001. The use of enzymes in ruminant diets:In Recent advances in animal nutrition, pp. 297-322. Edited by P. C. Garnsworthy and D. J. A. Cole. Nottingham. Univ. Press
  5. Beauchemin, K. A., Yang, W. Z. and Rode, L. M. 1999. Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows. J. Dairy Sci. 82:378-390 https://doi.org/10.3168/jds.S0022-0302(99)75244-6
  6. Beharka, A. A. and Nagaraja, T. G. 1991. Effects of Aspergillus oryzae extract(AMAFERM) on ruminal fibrolytic bacteria and in vitro fiber degradation. Page 32 in Abstracts of 21st Biennial Conference on Rumen Function. Chicago, IL
  7. Carro, M. D., Lebzien, P. and Rohr, K. 1992. Effects of yeast culture on rumen fermentation, digestibility and duodenal flow in dairy cows fed a silage based diet. Livest. Prod. Sci. 32:219-229 https://doi.org/10.1016/S0301-6226(12)80003-0
  8. Caton, J. S., Erickson, D. O., Carey, D. A. and Ulmer, D. L. 1993. Influence of Aspergillus oryzae fermentation extract on forage intake, site of digestion, in situ degradability and duodenal amino acid flow in steers grazing cool-season pasture. J. Anim. Sci. 71:779-787
  9. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-132
  10. Dawson, K. A. and Hopkins, D. M. 1991. Differential effects of live yeast on the cellulolytic activities of anaerobic ruminal bacteria. J. Anim. Sci. 69 (Suppl. 1):531
  11. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics 11:1-42
  12. Erasmus, L. J., Botha, P. M. and Kistner, A. 1992. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 75: 3056-3065 https://doi.org/10.3168/jds.S0022-0302(92)78069-2
  13. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771 https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  14. Feng, P., Hunt, C. W., Pritchard, G. T. and Julien, W. E. 1996. Effect of enzymes prepara- tions on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 74: 1349-1357
  15. Fiems, L. O., Cottyn, B. G., Dussert, L. and Vanacker, J. M. 1993. Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. Reprod. Nutr. Dev. 33:43-49 https://doi.org/10.1051/rnd:19930104
  16. Freter, R. 1992. Factors affecting the micro- ecology of the gut. In: R. Fuller (Ed.) Probiotics: The Scientific Basis. pp 111-144. Chapman & Hall, London
  17. Gray, W. R. and Ryan, J. P. 1988. A study of the effect of yeast culturye on ruminal fermen- tation in sheep. Page 129 in Biotechnology in the Feed Industry. T. P. Lyons, ed. Alltech Technical Publications, Nicholasville, KY
  18. Hentges, D. J. 1992. Gut flora in disease resistance. In: R. Fuller(Ed.) Probiotics: The Scientific Basis. pp 87-110. Chapman & Hall, London
  19. Higginbotham, G. E., Collar, C. A., Aseltine, M. S. and Bath, D. L. 1994. Effect of yeast culture and Aspergillus oryzae extract on milk yield in a commercial dairy herd. J. Dairy Sci. 77:343-348 https://doi.org/10.3168/jds.S0022-0302(94)76960-5
  20. Hristov, A. N., McAllister, T. A. and Cheng, K. J. 1998. Effect of dietary or abomasal supplement- ation of exogenous polysaccharide-degrading enzymes on rumen fermentation and nutrient digestibility. J. Anim. Sci. 76:3146-3156
  21. Hristov, A. N., McAllister, T. A. and Cheng, K. J. 2000. Intraruminal supplementation with increas- ing levels of exogenous polysaccharide-degrading enzymes: effects on nutrient digestion in cattle fed a barley grain diet. J. Anim. Sci. 78:477-487
  22. Jonsson, E. and Conway, P. 1992. Probiotics for pigs. In: R. Fuller (Ed.) Probiotics: The Scientific Basis. pp 260-316. Chapman & Hall, London
  23. Jalc, D., Baran, M., Vendrak, T. and Siroka, P. 1991. The effect of monensin on the fermentation of feed with different hay and concentrate proportions in(Rusitec) rumen pouch. Vet. Medicina 36:29-38
  24. Jenny, B. F., Vandijk, H. J. and Collins, J. A. 1991. Performance and fecal flora of calves fed a Bacillus subtilis concentrate. J. Dairy Sci. 74: 1968-1973 https://doi.org/10.3168/jds.S0022-0302(91)78364-1
  25. Kalogridou-Vassiliadou, D. 1992. Biochemical acti- vities of Bacillus species isolated from flat sour evaporated milk. J. Dairy Sci. 75:2681-2686 https://doi.org/10.3168/jds.S0022-0302(92)78030-8
  26. Krause, M., Beauchemin, K. A., Rode, L. M., Farr, B. I. and Norgaard, P. 1998. Fibrolytic enzyme treatment of barley grain and source of forage in high-grain diets fed to growing cattle. J. Anim. Sci. 76:2912-2920
  27. Kung, L. 2001. Developments in rumen fermenta- tion-commercial applications : In Recent advances in animal nutrition, pp. 281-295. Edited by P. C. Garnsworthy and D. J. A. Cole. Nottingham. Univ. Press
  28. Luchini, N. D., Broderick, G. A. and Combs, D. K. 1996. Characterization of the proteolytic activity of commercial proteases and strained ruminal fluid. J. Anim. Sci. 74:685-692
  29. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. and Morris, J. G. 1976. Rumen microbial growth rates and yields:Effect of amino acids and protein. J. Dairy Sci. 59:68-79 https://doi.org/10.3168/jds.S0022-0302(76)84157-4
  30. McAllister, T. A., Oosting, S. J., Popp, J. D., Mir, Z., Yanke, L. J., Hristov, A. N., Treacher, R. J. and Cheng, K. -J. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. 79:353-360 https://doi.org/10.4141/A98-099
  31. Miles, R. D. and Bootwalla, S. M. 1991. Direct- fed microbials in avian. In: Direct-Fed Microbials in Animal Production. A review of literature. Page 117 in Natl. Feed Ingred. Assoc., West Des Moines, IA
  32. Miller, G. M. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428 https://doi.org/10.1021/ac60147a030
  33. Perdigon, G. and Alvarez, S. 1992. Bacterial interactions in the gut. In: R. Fuller (Ed.) Pro- biotics: The Scientific Basis. pp 146-180. Chapman & Hall, London
  34. Phipps, R. H., Sutton, J. D., Bhat, M. K., Hartnell, G. F., Vicini, J. and Hard, D. L. 2000. Effect of cell-wall degrading enzymes and method of application on feed intake and milk production of Holstein-Friesian dairy cows. J. Dairy Sci. 83(Suppl. 1):236-237(Abstr.)
  35. Rode L. M., Yang, W. Z. and Beauchemin, K. A. 1999. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. 82:2121- 2126 https://doi.org/10.3168/jds.S0022-0302(99)75455-X
  36. Rojo, R., Mendoza, G. D., Gonzalez, S. S., Landois, L., Barcena, R. and Crosby, M. M. 2005. Effects of exogenous amylases from Bacillus licheniformis and Aspergillus niger on ruminal starch digestion and lamb performance. Anim. Feed Sci. Technol. In press
  37. Rust, J. W., Jacobson, N. L., McGillard, A. D. and Hotchkiss, D. K. 1965. Supplementation of dairy calf diets with enzymes. II. Effect on nutrient utilization and on composition of rumen fluid. J. Anim. Sci. 24:156-160
  38. SAS. 2000. SAS/STAT$^{\circledR}$ User's guide (Release 8.1 ed.). Statistics, SAS Inst, Inc., Cary, NC
  39. Sauer, F. D., Kramer, J. K. G. and Cantwell, W. J. 1989. Antiketogenic effects of monensin in early lactation. J. Dairy Sci. 72:436-442 https://doi.org/10.3168/jds.S0022-0302(89)79125-6
  40. Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics. A biometrical approach (2nd eds.). McGraw-Hill, Inc
  41. Sutton, J. D., Phipps, R. H., Beever, D. E., Humphries, D. J., Hartnell, G. F., Vicini, J. L. and Hard, D. L. 2003. Effect of method of application of a fibrolytic enzyme product on digestive processes and milk production in Holstein-Friesian cows. J. Dairy Sci. 86:546-556 https://doi.org/10.3168/jds.S0022-0302(03)73633-9
  42. Tilley, J. M. A. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  43. Van Soest, P. J., Roberts, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  44. Wang, Y., McAllister, T. A., Rode, L. M., Beauchemin, K. A., Morgavi, D. P., Nsereko, V. L., Iwaasa, A. D. and Yang, W. Z. 2001. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the rumen simulation technique (Rusitec). Br. J. Nutr. 85:325-332 https://doi.org/10.1079/BJN2000277
  45. Yang, W. Z., Beauchemin, K. A. and Rode, L. M. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82:391-403 https://doi.org/10.3168/jds.S0022-0302(99)75245-8
  46. Yang, W. Z., Beauchemin, K. A. and Rode, L. M. 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83:2512-2520 https://doi.org/10.3168/jds.S0022-0302(00)75143-5
  47. Yoon, I. K. and Stern, M. D. 1995. Influence of direct-fed microbials on ruminal microbial fermenta- tion and performance of ruminants: A review. Asian-Aust. J. Anim. Sci. 8:533-555