DOI QR코드

DOI QR Code

Product Quality and Shelf-life Effect of Low-fat Functional Sausages Manufactured with Sodium Lactate and Chitosans During Storage at 15℃

젖산나트륨과 키토산을 첨가한 저지방 기능성 소시지의 15℃에서 저장 중 품질 및 저장성 효과

  • Chin, Koo-Bok (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Kook, Sung-H. (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Choi, Soon-H. (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University)
  • 진구복 (전남대학교 동물자원학부 및 농업과학기술연구소) ;
  • 국성호 (전남대학교 동물자원학부 및 농업과학기술연구소) ;
  • 최순희 (전남대학교 동물자원학부 및 농업과학기술연구소)
  • Published : 2005.08.31

Abstract

This study was performed to measure physicochemical and textural characteristics, and shelf-life effect of low-fat functional sausages(LFFSs) manufactured with sodium lactate(SL, 3.3%), lac pigment and various molecular weights(MWs) of chitosan (Low=1.5 kDa, Med=30-50 kDa and High=200 kDa) during storage at 15$^{\circ}C$ for 18 days. LFFSs had 73.7-76.0% moisture, lower than 3% fat and 14-15% protein, respectively. pH values were 6.05-6.44 and the control(150 ppm, $NaNO_2$) was the lowest among LFFSs (p<0.05). Increasing storage time decreased pH values, but no differences in pH values were observed up to 6 days of storage (p>0.05). LFFSs containing SL and low MW of chitosan improved water holding capacity (WHC) and different from those with SL and medium-MW chitosan. WHC was decreased with increased storage time and differences of WHC were observed from 18 days of storage. The addition of chitosan reduced both lightness and redness values, as compared to 150 ppm sodium nitrite(SN), and increased storage time decreased yellowness(p<0.05), especially at 12 days of storage. LFFSs with SL and medium-MW chitosan increased most textural properties compared to the control(p<0.05). The addition of SN of 150 ppm in LFFSs retarded microbial growth for E. coli 0157:H7, while those with SL tended to have an antimicrobial effect for Listeria monocytogenes(LM). The growth rate of LM was delayed by addition of various MW of chitosans in LFFSs, especially high MW chitosan, as compared to LFFSs containing SL alone. These results indicated that the functional, textural and antimicrobial effects of LFFSs were improved by addition SL and various MW of chitosan combinations. In addition, 0.05% lac pigment improved the cure color of LFFSs similar to those of 150 ppm SN.

본 연구는 젖산나트륨과 다양한 분자량이 각기 다른 키토산을 저지방 기능성 소시지의 제조 시 첨가하여 15$^{\circ}C$에서 저장 중 이화학적 및 조직적인 성상과 항균 효과를 조사하기 위해서 실시하였으며 락색소를 첨가하여 아질산염과 대체할 수 있는 발색효과를 나타내는지 알아보기 위하여 실시하였다. 제조한 저지방 기능성 소시지의 일반성분을 분석한 결과 수분 73.7- 76.0, 지방 2.5-2.7 그리고 단백질은 14.3-15.3%의 수준이었다. 각 처리구별 pH는 6.30-6.44 범위였으며 저장기간이 경과함에 따라 감소하는 경향을 보였다. 저분자 키토산(1.5kDa)을 첨가한 처리구의 보수력이 중분자(30-50kDa) 키토산 처리구보다 높았으며 저장기간이 증가함에 따라 증가하였다. 젖산나트륨과 키토산의 첨가에 따른 진공 감량에서의 차이는 없었으며 저장 기간 중에서도 유의적 차이는 보이지 않았다(p>0.05). 키토산 첨가에 의한 명도(L)와 황색도(b)가 낮았으며 락색소를 0.05% 첨가한 처리구의 적색도는 아질산염 150ppm 보다 낮았으나 아질산염 무첨가 처리구보다 높은 값을 나타내었다. 15$^{\circ}C$에서 저장기간 동안에 명도(L)와 황색도(b)는 차이가 없었으며 적색도는 저장기간이 경과함에 따라 증가하는 경향을 보였다. 젖산나트륨과 중분자 키토산(30-50 kDa)을 첨가한 처리구는 다른 처리구에 비해 모든 조직적 성상에서 높은 값을 나타내었고 탄력성, 검성, 저작성 그리고 응집성에서 저분자(1.5kDa)와 고분자(200kDa)의 처리구보다 높았다(p< 0.05). 저장 기간 중 모든 조직적 성상들이 증가하는 경향을 보였다. 103CFU/g 수준으로 접종한 병원성미생물의 성장도를 살펴보면 Salmonella typhimurium과 Listeria monocytogenes는 아질산염 150ppm을 첨가한 대조구와 무첨가구에서 차이를 보이지 않으나, E. coli O157:H7은 아질산염 150ppm을 첨가한 처리구에서 유의적으로 낮은 성장도를 보였다(p<0.05). 키토산 분자량별로 살펴보면 저분자의 경우 젖산나트륨만 첨가된 것과 비교하여 유의차를 보이지 않아(p>0.05) 상승효과를 보이지 않은 반면 중, 고분자의 경우 젖산나트륨 처리구에 비해 유의성 있게 낮은 미생물 성장도를 보였다(p<0.05). 특히 고분자 처리구는 저분자 키토산에 비해 안정된 미생물 성장도를 보이며, L. monocytogenes에 대해 가장 강한 항균 작용을 보였다(p<0.05). L. monocytogenes는 고분자 키토산 첨가구가 저장 9일째까지 4 log CFU/g 이하의 균수를 유지함으로써, 젖산나트륨 첨가구와 비교하여 2 log CFU/g 이상의 차이를 보이며 가장 뛰어난 항균효과를 보였으나 저장 후기로 갈수록 그 차이가 미미하였다. 결론적으로 젖산나트륨과 키토산을 첨가한 처리구의 항균 효과는 아질산염 150 ppm을 첨가한 대조구보다 훨씬 높았고 다양한 분자량의 키토산 중에서 고분자 키토산이 다른 분자량의 키토산의 처리구들보다 L. monocytogenes에 대한 강한 항균효과를 보였다. 젖산나트륨에 중분자 키토산을 첨가한 처리구는 대부분의 조직적 성상에서 다른 처리구들보다 높았으며 락색소에 의한 발색효과는 아질산염 150 ppm 보다 낮았지만 아질산염 무첨가구에 비해 발색효과가 좋아 일부는 대체가 가능하였으나 완전 대체는 불가능한 것으로 나타났다.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis. 16th edition. AOAC International, Washington, DC
  2. Bourne, M. C. 1978. Texture profile analysis. Food Technol. 32(7):62-66, 72
  3. Carballo, J., Barreto, G. and Jimenez Colmenero, F. 1995. Starch and egg white influence on properties of bologna sausage as related to fat content. J. Food Sci. 60(4):673-677 https://doi.org/10.1111/j.1365-2621.1995.tb06204.x
  4. Chin, K. B. and Choi, S. H. 2001. Evaluation of the addition of sodium lactate and a fat replacer in very low-fat bologna (model system) on the product quality and shelf-life effect during refrigerated storage. J. Korean Soc. Food Sci. Nutr. 30(5):858-864
  5. Chin, K. B. and Choi, S. H. 2005. Evaluation of sodium lactate combined with chitosan of various molecular weights and lac pigment for the extension of shelf-life and color development of low-fat sausage during refrigerated storage. Food Sci. and Biotechnol. 4(2):275-279
  6. Chin, K. B. and Chung, B. K. 2002. Development of low-fat meat processing technology using interactions between meat protein and hydrocolloids. I. Optimization of interactions between meat proteins and hydrocolloids by model study. J. Korean Soc. Food Sci. Nutr. 31(3):438-444 https://doi.org/10.3746/jkfn.2002.31.3.438
  7. Chin, K. B. and Lee, H. C. 2002. Development of low-fat meat processing technology using interactions between meat protein and hydrocolloids. II. Development of low-fat sausages using the results of model study. J. Korean Soc. Food Sci. Nutr, 31(4):629-635 https://doi.org/10.3746/jkfn.2002.31.4.629
  8. Chin, K. B., Lee, H, L. and Chun, S. S. 2004. Product characteristics of comminuted sausages as affected by various fat and moisture combinations. Asian-Aust. J. Anim. Sci. 17(4):538-542 https://doi.org/10.5713/ajas.2004.538
  9. Chin, K. B. and Wang. S. H. 2004. Product quality of low-fat sausages formulated with too levels of chitosan. Kor. J. Food Sci. Ani. Resource 24:361-366
  10. Choi, S. H. and Chin, K. B. 2002. Development of low-fat comminuted sausage manufactured with various fat replacers similar textural characteristics to those with regular-fat counterpart. Korean J. Food Sci. and Technol. 34:577-582
  11. Choi, S. H. and Chin, K. B. 2003. Evaluation of sodium lactate as a replacement for conventional chemical preservative in comminuted sausages inoculated with Listeria monocytogenes. Meat Sci. 65:531-537 https://doi.org/10.1016/S0309-1740(02)00245-0
  12. Choi, S. H. Kim, K. H., Eun, J. B. and Chin, K. B. 2003. Growth suppression of inoculated Listeria monocytogenes and physicochemical and textural properties of low-fat sausages as affected by sodium lactate and a fat replacer. J. Food Sci. 68:2542-2546 https://doi.org/10.1111/j.1365-2621.2003.tb07058.x
  13. Darmadji, P. and Izumimoto, M. 1994. Effect of chitosan in meat preservation. Meat Sci. 38:243-254 https://doi.org/10.1016/0309-1740(94)90114-7
  14. de Roos, K. B. 1997. How lipids influence food flavor. Food Technol. 51(1):60-62
  15. Gnanasambandam, R. and Zayas, J. F. 1992. Functionality of wheat genn protein in comminuted meat products as compared with com genn and soy proteins. J. Food Sci. 57(4):829-833 https://doi.org/10.1111/j.1365-2621.1992.tb14304.x
  16. Hughes, E., Cofrades, S. and Troy, D. J. 1997. Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12 and 30% fat. Meat Sci. 45(3):273-281 https://doi.org/10.1016/S0309-1740(96)00109-X
  17. Jauregui, C. A., Regenstein, J. N. and Baker, R C. 1981. A simple centrifugal method for measuring expressible moisture, a water-binding property of muscle foods. J. Food Sci. 46:271-273
  18. Jo, C., Lee, J. W., Lee, K H., Lee, J. H. and B, M. W. 2001a. Effect of irradiation on pH, color, and sensory quality of cooked pork sausage with added chitosan oligomer. J. Food Sci. Nutr. 6(3):147-151
  19. Jo, C., Lee, J. W., Lee, K H., Lee, J. H. and B, M. W. 2001b. Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci. 59:369-375 https://doi.org/10.1016/S0309-1740(01)00089-4
  20. Kim, O. H. and Choi, Y. H. 1999. The study on developing pork sausage by treatment of chitosan. Proceeding of Annual Conference, The Korea Society for Chitin and Chitosan., Seoul, Korea, pp. 95-121
  21. Kim, S. M., Cho, Y. S., Lee, S. H., Kim, D. G. and Sung, S. K. 2001. Development of sausage using natural resource by-product. J. Korean Soc. Food Sci. Nutr. 30(4): 635-640
  22. Kook, S. H., Choi, S. H., Kang, S. M., Park, S. Y. and Chin, K B. 2003. Product quality and extension of shelf-life of low-fat functional sausages manufactured with sodium lactate and chitosans during refrigerated storage. Korean J. Food Sci. Ani. Resour. 23(2):128-136
  23. Knorr, D. 1984 Use of chitinous polymers in food: A challenge for food research and development. Food Technol. 38:85-97
  24. Korean Food & Drug Administration (KFDA) 2002. Food Code. pp. 220
  25. Lamkey, J. W. 1998. Non-meat ingredients for meat processing. American Meat Science Association 51:48-51
  26. Lin, K W. and Chao, J. Y. 2001. Quality characteristics of reduced-fat chinese-style sausage as related to chitosan's molecular weight. Meat Sci. 59:343-351 https://doi.org/10.1016/S0309-1740(01)00084-5
  27. Lin, K W. and Lin, S. N. 2002. Effects of sodium lactate and trisodium phosphate on the physicochemical properties and shelf life of low-fat chinese-style sausage. Meat Sci. 60:147-154 https://doi.org/10.1016/S0309-1740(01)00116-4
  28. Park, J. H., Cha, B. J. and Lee, Y. N. 2003. Antibacterial activity of chitosan acetate on food-borne enteropathogenic bacteria. Food Sci. Biotechnol. 12(1):100-103
  29. Pietrasik, Z. and Duda, Z. 2000. Effect of fat content and soy protein/carrageenan mis on the quality characteristics of comminuted, scalded sausages. Meat Sci. 56:181-188 https://doi.org/10.1016/S0309-1740(00)00038-3
  30. Roller, S. and Covill, N. 1999. The antifungal properties of chitosan in laboratory media and apple juice. International J. Food Microbiol. 47:67-77 https://doi.org/10.1016/S0168-1605(99)00006-9
  31. Roller, S., Sagoo, S., Board, R, O'Mahony, T., Caplice, E., Fitzgerald, G., Fogden, M., Owen, M. and Fletcher, H. 2002. Novel combinations of chitosan, camocin and sulphite for the preservation of chilled pork sausages. Meat Sci. 62: 165-177 https://doi.org/10.1016/S0309-1740(01)00243-1
  32. Sagoo, S., Board, R and Roller, S. 2002. Chitosan inhibits growth of spoilage microorganisms in chilled pork products. Food Microbiol. 19:175-182 https://doi.org/10.1006/fmic.2001.0474
  33. SAS Institute Inc. 1989. SAS User's Guide; Statistical Analysis System, Cary. NC
  34. Tan, W. and Shelf, L. A. 2002. Effects of sodium chloride and lactates on chemical and microbiological changes in refrigerated and frozen fresh ground pork. Meat Sci. 62:27-32 https://doi.org/10.1016/S0309-1740(01)00223-6
  35. Tsai, G. J., Wu, Z. Y. and Su, W. H. 2000. Antibacterial Activity of a chitooligo-saccharide mixture prepared by cellulase digestion of shrimp chitosan and its application to milk preservation. J. Food Protect. 63(6):747-752 https://doi.org/10.4315/0362-028X-63.6.747
  36. Wang, G. H. 1992. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Protect. 55(11):916-919 https://doi.org/10.4315/0362-028X-55.11.916
  37. Youn, S. K, Kim, Y. J. and Ahn, D. H. 2001a Antioxidative effects of chitosan in meat sausage. J. Korean Soc. Food Sci. Nutr. 30(3):477-481
  38. Youn, S. K, Park, S. M., Kim, Y. J. and Ahn, D. H. 2001b. Studies on substitution effect of chitosan against sodium nitrite in pork sausage. Korean J. Food Sci. Technol. 33(5):551-559
  39. Youn, S. K, Park, S. M. and Ahn, D. H. 2000. Studies on the improvement of storage property in meat sausage using chitosan- II . Difference of storage property by molecular weight of chitosan. J. Korean Soc. Food Sci. Nutr. 29(5):849-853