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ON COTYPE AND SUMMING PROPERTIES
FOR BANACH SPACE OPERATORS

H1 JA SonG

ABSTRACT. We characterize Gaussian cotype X operators acting
between Banach spaces, where X is a Banach sequence space. Fur-
ther we give an extensive presentation of results on the connections
between cotype and summing operators.

1. Introduction

The theory of type and cotype reflects the interplay between geome-
try and probability in Banach spaces. In particular, considerable effort
has been expended on the precise determination of the cotype nature
of certain classes of operators in analysis. The tightness of the rela-
tionship between cotype and summing operators has been spotlighted.

B. Maurey [5] described Rademacher cotype g operators acting on
Banach lattices as follows : Let 2 < ¢ < oo. The following are equiv-
alent statements about an operator T' from a Banach lattice L to a
Banach space F'.

(i) T is (¢, 1)-summing.
(ii) T is (g,r)-concave for all 1 < r < q.
(iii) 7T is of Rademacher cotype q.
(iv) There is a constant C' such that for all choices of finitely many
disjoint vectors x1,--- ,x, from L we have

S ITar Ve <o 1 ).
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Afterwards an alternative approach to this kind of problem was
proposed by G. Pisier [9]. He proved that a (g, 1)-summing operator
acting from a C(K) space to a Banach space admits a factorization
through the Lorentz space L, 1(u) for some probability measure p on
K.

Thus concerning operators acting from a C(K) space to a Banach
space, the prototype of (2,1)-summing operators is the canonical em-
bedding from C([0,1]) to the Lorentz space Lo ;. M. Talagrand [12]
showed that this canonical embedding is not even of Gaussian cotype
2.

Treading the same path of ideas S.J. Montgomery-Smith [6] im-
plicitly rediscovered Pisier’s criteria and proved that for a probability
measure j on K the canonical embedding from a C(K) space to the
Lorentz-Orlicz space L2 105¢2(ft) is of Gaussian cotype 2.

The following Talagrand’s characterization of Gaussian cotype ¢
operators acting on C(K) spaces [13] built on previous work of S.J.
Montgomery-Smith [6], [7].

Let 2 < g < co. The following statements about the operator T
from a C'(K) space to a Banach space F' are equivalent.

(i) T is of Gaussian cotype g.
(ii) T factors through the Lorentz-Orlicz space Liq(1og¢)a/2,1 (1) for
some probability measure p on K.
(iii) For each sequence (zy) in C(K) satisfying || >, |zk| ||cc < 1,
there exists a constant C' such that

[Tz

C q/2 <C
v (log(qzam))

Talagrand’s result was complemented by M. Junge [2]. He proved
that an operator T' from a C(K) space to a Banach space F' is of
Gaussian cotype ¢ if and only if

[Ty |7 1/q ! 2 5,\1/2
S G <o (f I et

k

for all sequences (xx) in C(K) with (||Tzk||) decreasing.
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In this paper we survey the behaviour of cotype operators in con-
nection with the summability property. Here, we present M. Junge’s
approach to this subject [2].

The concepts of (X, r)-summing and cotype X operators are ex-
tended notions of (g, r)-summing and cotype g operators to the setting
of Banach sequence space X.

We first establish a description of Gaussian cotype X operators
acting between Banach spaces in terms of (X, 2)-summing operators,
which is a generalization of the result due to N. Tomczak-Jaegermann
[14]. And then we provide usable necessary condition which implies
that an operator is of Gaussian cotype X.

Next by using Junge’s proof, we extend the above mentioned result
of Maurey to the framework of maximal Banach sequence space.

Finally we see how the Gaussian cotype X operators on C'(K) spaces
are linked with the Rademacher cotype X operators on C(K) spaces.

2. Definitions and Notation

We give some of the definitions and notation to be used. Through-
out this paper E and F' denote Banach spaces with duals £* and F™*
respectively.

By a Banach sequence space we mean a real Banach lattice on the
set of positive integers.

A Banach sequence space X is called symmetric if

1(zn )l x = 1l (z5) ]l

where (z}) denotes the decreasing rearrangement of the sequence (z,,).
A Banach sequence space X is said to be maximal if the unit ball
of X is closed in the pointwise convergence topology induced by the
space w of all real sequences.
The Kothe dual X of a Banach sequence space X is

Xt ={o=(0,) Ew: Z\am’nl <oo forall 7= (r,)e€X}.
Note that Xt is a Banach sequence space under the norm

ol = sup {3 loural : I7llx < 1}, 0 € X*.



258 Hi Ja Song

We let M(X,Y) denote the space of multipliers from a Banach
sequence space X to a Banach sequence space Y, that is M(X,Y)
consists of all scalar sequences o such that the associated multiplica-
tion operator M, is defined and bounded from X to Y. M(X,Y)
is a Banach sequence space equipped with the norm |[|o||sm(xy) =
sup {[lorly : I7llx < 1}.

For 1 < p < oo, a Banach lattice L is called p-convex if there is
a constant C such that irrespective of the finite collection of vectors
Ti, 5 xn € L yWE have ||(ZZ:1 |xk|p>1/p|| < C- (ZZ:l ||xk||p)1/p'
The least such C' is denoted by KP?(L).

If L is p-convex and KP(L) = 1 then L,y = {z : |z|'/? € L} endowed
with the norm ||zl = [|z|*/?||%, @ € L), is a Banach lattice.

Let 1 < p < oo and let X be a Banach sequence space. An operator
T from a Banach lattice L to a Banach space F is called (X, p)-concave
if there is a constant C' such that for any choice of finitely many vectors
21, @ € L we have | Yp_ [ Tewllenllx < C- [(Try o) 7).
We write Kx (1) for the least constant C' that works.

Notation

(1) The sequence of unit vectors in ¢, is denoted by (e, ).

(2) B(E, F) denotes the set of all bounded linear operators from F
into F'.

(3) M, denotes the multiplication operator induced by o.

(4) C(K) denotes the space of all continuous functions defined on
a compact Hausdorff space K.

(5) The closed unit ball of F is denoted by Bpg.

(6) For 1 < p < oo, the conjugate of p is denoted by p’, i.e.,1/p +
1/p =1.

For a sequence (z,) in E we write

(za) e = sup {(D_ (", 2,)[")/? : " € Bp-}.

n

Let 1 <¢<p<oo. ForT € B(E,F), we set

Vap(T) = mf{(Y_ a9 | (ya) 5,
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where the infimum is taken over all representations T' = )z} @ yp
with (z) in E* and (y,) in F. We say that T € B(E, F) is (q,p)-
nuclear if it can be written in the form T'= )" T, with T;, € B(E, F')
such that ) v, ,(T,) < oo. Define the (g, p)-nuclear norm of 7' by
Vg p(T) =inf{> " v4p(Tn)}, where the infimum is taken over all finite
representations of T' as above.

Let {gx} be a sequence of identically distributed independent stan-
dard Gaussian random variables on a probability space (€2, %, P).

The sequence of Rademacher functions (r,(t)) on [0,1] is defined
by r,(t) = sign (sin2"xt) and is a sequence of independent identically
distributed random variables taking the values 4+1 with probability
1/2.

An operator T' € B(FE, F) is called y-summing if there is a constant
C such that regardless of the natural number n and regardless of the
choice of z1,--- ,x, in E, we have

(Jo Il 2= g (W) Tag|PdP(w)) /2 < C | ()75
The infimum of such C' is denoted by 7 (T"). We shall write IL,(E, F')
for the set of all v-summing operators from E to F'.

Let 1 < p < o and let X be a Banach sequence space. For any
operator T' € B(E, F') we define 7'y (T') = inf C, where the infimum
is taken over all constants C' such that for any vectors xi,--- ,xz, in
E, |37 1Tk exllx < C - ||(z)7]I5ea*. We say that an operator T is
(X, p)-summing if 7x ,(T) = sup,, 7% (1) < oco.

Let X be a Banach sequence space. For an operator T' € B(E, F'),
rc’y (T') is the smallest constant C' such that for any vectors x1,-- -, zy,
in E/ we have

n 1 n
1D 1T k]lex]lx < C- (/O 1D re () *de)' /2.
1 1

An operator T' is said to be of Rademacher cotype X if rex(7) =
sup,, rc'y (T') < oo.

Let X be a Banach sequence space. For any operator T' € B(E, F')
we define gc'y (1) = inf C, where the infimum is taken over all constants
C' such that for any vectors z1,--- ,x, in E,

I3 1Talenlx <€ ([ 1Y an(wlanlPap)' >
1 k=1
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We say that an operator T' is of Gaussian cotype X if gex(T) =
sup,, gy (1) < oo.

Let f:(0,00) — (0,00) be a continuous function with f(1) = 1 and
SUD~( % < oo for every t > 0. The Lorentz-Marcinkiewicz sequence

space {5 , consists of all bounded sequences of scalars o = (o,,) having
a finite quasi-norm

*

o0 = | (Calman )" if0<q <o,
N sup,, [f(n)oy, if ¢ = oo.

For 0 < p,q < 00, —00 < v < 0o and f(t) = t"/P(log(t +1))” we get
the Lorentz-Zygmund sequence space which is denoted by

(prq(logf)“, H : Hp,q,v)-

In particular, for v = 0 we obtain the Lorentz sequence space (¢, 4, || -

Hpvq)'
The n-th approximation number of T' € B(FE, F') is defined by

an(T) =inf{||T — S| : S € B(E, F), rank(S) < n}.
The n-th Weyl number of T' € B(E, F) is defined by
2 (T) = sup{ an(TU) : U € B({s, E), [|U| < 1}.
For T' € B(E, F'), the n-th Weyl number relative to 7, is defined by
zn(T|my) = sup{ an(TU) : U € I, ({5, E), 7, (U) < 1}.

3. Results

Let us start with the problem which gives a characterization of
Gaussian cotype X operators by means of (X, 2)-summing operators.

THEOREM 1. Let 2 < q¢ < oo and let X be a Banach sequence
space. An operator T € B(E, F) is of Gaussian cotype X if and only
if T'S € B(ls, F) is (X, 2)-summing for all S € I1,(¢3, E). In this case
gcv (T') = sup{ WSL(VZ(TS) 1S ell (b, B), my(S) < 1}
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Proof. Suppose first that T € B(E, F) is of Gaussian cotype X.
Then given any operator S € I, ({3, E') with 7., (S) < 1, we have

HZHTSmkneknwch / ||ng Sy |2dP(w)) /2

< gex (1) - my (S) - [[(zx)T H eak<g0x( ) @3

for any vectors x1,--- ,x, in fs.
This assures us that sup{7% (7'S) : S € IL,(l2, E), 7 (S) < 1} <
gek (T).

For the other implication, we assume that T'S € B({2, F') is (X, 2)-
summing for all S € IL, (¢, E). For any given € > 0, we select vectors
T1,-+ , T, in E such that ([, || Y pe; ge(w)zs]?dP(w))/? = 1 and
g (T) < (1 + €)|| X7 ITxk|lex || x. Define an operator S € B(¢y, E)
by S =7 ex®xy. Since Sey, = xy for k =1,--- ,n, we get m,(5) = 1.
Our hypothesis guarantees that

I ITSexllexllx < w%o(TS) - [l(er)ilI3* < 7% o(TS).
1
Consequently gcy (T) < sup{m’ o(T'S) : S € IL, ({2, E), m,(5) < 1}.00

In the following we find a necessary condition for an operator to be
of Gaussian cotype X.

THEOREM 2. Let X be a Banach sequence space. If an operator
T € B(E, F) is of Gaussian cotype X then (x,(T|r)) € X.

Proof. Let S € I1,({2, ) with 7, (S) < 1. Since T' € B(E,F) is
of Gaussian cotype X, an appeal to theorem 1 establishes that T'S €
B(l3, F') is (X, 2)-summing. From lemma 2.7.1. of [8] we know that for
every € > 0, there exists an orthonormal family {z1,--- ,z,} in 5 such
that ar(T'S) < (1+¢€)||T'Sx| for k =1,--- ,n. Therefore we have

1D an(@S)exllx < (L +€) I Y IIT Szl exllx
1 1

< (14 €)mx2(T8) [[(wr) T [13°% = (1 + €) mx 2(T'S).
This yields that (z,(T|r,)) € X. O
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Next we establish a quotient formula for (X, p)-summing operators,
which is an improvement of the result due to M. Defant and M. Junge

[1].

LEMMA 1. Let 1 <r < g < oo and let Y be a maximal symmetric
Banach sequence space. If X = M(Y,{,) then for any operator T" &
B(E, F) we have

mx,(T) = sup{my (Mo RT)|R € B(F, loc), My € B(loo, foo),
IR| < 1,0 € By}.

Proof. Take any vectors x1,--- ,z, in E. A quick peek at the defini-
tion of ||(||7x||)}||x ensures that for any € > 0 there exists a sequence
0 € By satisfying | X1 [Taeller]|x < (1+6) (T [|Tx[low]4)/4. Fur-
thermore there is a sequence (y;)7 in Bp+ with (y}, Txy) = | Ty for
k =1,---,n. Define an operator R € B(F, () via R = Y] yi ® ey.
It is obvious that ||R|| = 1 and we get

HZuTxkuekux Zr y Ty o[ 9)1/9
ZHM RTa || %)Y < 7 (M, RT) || ()7 | o,

Hence 7' ,.(T) < (1+€)my ,.(MyRT). This gives us the upper estimate.

To obtain the lower estlmate we choose a sequence o € By and an
operator R € B(F,{,) with ||R|| < 1. It is enough to show that for ev-
ery natural number m with n <m, mp .(Pn M, RT) < 7% (T), where

=Y T er®er € B(loo, L72). Takmg note of the fact that the (q,7)-

summmg norm and the (¢’, 7’")-nuclear norm are in trace duality we de-
rive that there is an operator S € B(¢%, E) such that vy ,+(S) < 1 and
7 (PmMoRT) < (14 €) tr(SPy, M, RT). Thanks to Maurey’s result

[1], it is no loss to assume that S = Zf’ o By M.« Py, where (a)Y is a
sequence of positive real numbers with Ziv ar =1, (m;)} is an increas-
ing sequence in {1,2,---m}, Py = > [ em, ®e; € BUL L) M« €

o0 o0

B, ) with ||[7%]|, < 1, By € B({%, E) with ||Bg|| < 1 for k =

oo’ Y’
1,-

-+ N.

Y
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We make use of Holder’s inequalty to obtain that

tr(By M Pe P My RT)| = | > (M1 Py Py My RT B (e;), €)]
j=1

= |Z7-f<emj,PmMgRTBk(ej)>| < Z ’TJkUmj\ |RT By (e;)|

j=1 =1

n

< (Z T (o, | IRTBr(e;) 1))

j=1

< | Y IIRTBi(ej)lleslix llolly < m% . (RT) I1(Br(es)) iyl

j=1
<|[R|| 7 .(T) | Bx| < 7% ,.(T).
Hence

N
tr(SPynMyRT) <3 oy, |tr(Be Mo PP M, RT)| < 7% .(T).
1

This informs us the desired estimate. O

We now turn to the study of the p-convexity of a maximal symmetric
Banach sequence space.

LEMMA 2. Let 1 < p < oo and let X be a p-convex maximal sym-
metric Banach sequence space. Then there exists a maximal symmetric
Banach sequence space Y such that X = M(Y,4,).

Proof. We set Y = (X(J;))(;), where X(,) = {z : [z|'/? € X}. Note
1 1
that |\l = [IAPIY? = sup{Wully/” : lullx,, <1} = sup{av]l, :

X+
(p)
[vl|x <1} = [[Mlam(x,e,)- In other words, Y = M(X, 4,).
Since [|o7]l, < [lollx [ITlmcx,e,) = llollx [I7]ly, it follows that

lollrey,e,) < llollx-
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On the one hand,

1/p

1
lollx = lo” X2, = lle” I3

M(X+ 21)
= sup{(}_ lowl"l7e)/ ¢ |7ll s <1
< lloll s,y sup{ 777y 17l < 1}

1/p

= llollaereny supdlille lirllxe < 13 < llolamere,).

As a consequence X = M(Y,¢,).
O

A decisive step toward the proof of the theorem given below is pro-
vided by the following criterion.

PROPOSITION. Let 1 < r < oo and let X be a maximal symmetric
Banach sequence space. An operator T' from a Banach lattice L to a
Banach space F is (X, r)-concave with Kx (1) < C' if and only if for

every positive operator S : C(K) — L, the composition T'S : C(K) —
F is (X, r)-summing with nx .(T'S) < C - ||9].

Proof. Let S : C(K) — L be any positive operator, and pick
fi,-++, fn from C(K). Then we have

D _ISflHY" = SUP{Zak Sfe:llall <1}
1

sup{zakfk lall < 1}) = er\ U,

Therefore if T': L — F'is (X, r)-concave and Kx (7)) < C then
I ITS fellenllx < Kx (D) 1S Fel")7]
1 1

< Ex (DS IO 1AMl = Kx o (DISI I(fe)l[3e-.
1
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This signifies that 7S is (X, r)-summing with 7x ,(7'S) < Kx .(T) -
IS]]-

For the converse, take vectors z1,--- ,z, in L. We can assume that
z = (37 |zk|")*/" has norm one. Notice that I(z) = {y € L : |y| <
A - |z| for some 0 < A\ < oo} endowed with the norm ||y||ec = inf{\ >
0: |yl < ”;\—” -|lz| },y € I(x), can be identified with a space C'(K) for a
suitably chosen compact Hausdorff space K. Let J : I(z) = C(K) —
L be the canonical embedding and let 7' : L. — F. In view of our
hypothesis, T'J is (X, r)-summing with 7x ,(T"J) < C. Accordingly

I W Tzallerllx = 1Y ITTzrllen]x
1 1

n

< wx (THIQ eV o
1

= 7xr(TI)|[2]|oo = mx (TT)[J2]| < C.

This forces that 1" is (X, r)-concave with Kx (1) < C.
0J

In the next two theorems we intend to generalize the result of B.
Maurey [5], which is a description of Rademacher cotype ¢ operators,
to the setting of Banach sequence space.

THEOREM 3. Let 2 < q¢ < oo and let X be a g-convex maximal
symmetric Banach sequence space. The following are equivalent state-

ments about an operator T from a Banach lattice L to a Banach space
F.

(i) T is (X, 1)-summing.
(ii) T is (X, r)-concave for all 1 < r < q.
(iii) T is of Rademacher cotype X.

Proof. (i) = (ii). By virtue of the hypothesis (i), for any vectors
1, , &y from L, we have
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n
I W Tkl erllx < o (1) [1(za)7 [l
1
n
=% 1(T) sup{|l ) arzall : [lafoe < 1}
1

< wa (D) sup{)  awar = lalloe < 1 = 7% (T) Yl Il
1 1

This means that T is (X, 1)-concave with K% (T) < 7% (7). An
appeal to proposition ensures that for every positive operator S :
C(K) — L, the composition T'S : C(K) — F' is (X, 1)-summing. The
g-convexity of X enables us to invoke lemma 2 to get that there exists a
maximal symmetric Banach sequence space Y such that X = M(Y,{,).
Taking account of the fact that (g, 1)-summing operators on C(K) are
always (g, r)-summing for 1 < r < ¢ and using lemma 1 we obtain
that TS : C(K) — F is (X,r)-summing. It takes another appeal to
proposition to see that T is (X, r)-concave for all 1 <r < q.

(ii) = (iii). The hypothesis (ii) indicates that 7" is (X, 2)-concave. We
apply Khinchin’s inequality to produce that for any vectors x1,--- ,z,
from L,

I I Tzullerllx < KX (DI lew®) 2]
1 1

<O KY,(T) / IS a2z,

This gives that 7' is of Rademacher cotype X with rc%(T) < C -
K% o(T).

(iii) = (i). Using Kahane’s inequality, together with the hypothesis
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(iii), for any vectors x1,- -+ ,z, from L, we get

n 1 n
I3 ITaul eallx < k()| 1 muttyonlfan)'?
1 1

< Crex ()| 1 rettyo i)

< Crck(T)sup{|| Y el = € = £1} = Ok (T) || () [[F**

This ensures that 7" is (X, 1)-summing with 7% | (T') < C-rck (7). O

THEOREM 4. Let 2 < q < oo and let X be a g-convex maximal
symmetric Banach sequence space. An operator T from a Banach
lattice L to a Banach space F is (X, 1)-summing if and only if there is
a constant C' such that for all choices of finitely many disjoint vectors
21,0 2 from L, | 27 [ Tanl exllx < O || 27 ]

Proof. Assume first that our condition holds. Let S : C(K) — L be
a positive operator. We select disjointly supported functions f1,--- , f,
from C(K). The very nature of S assures that S fy,--- , S f, are disjoint
vectors in L, so our hypothesis tells us that

1Y TS frllerllx <C- 1) SSil
1 1

< CSIEY fill = C- ISl
1

Thus TS : C(K) — F is (X, 1)-summing. It follows from the proof
of theorem 3 that 7S : C(K) — F is (X,r)-summing for 1 < r < g.
Proposition permits us to have that T is (X, r)-concave for 1 <r < g.
We use theorem 3 to find that 7" is (X, 1)-summing.

To pass in the other direction, we suppose that T': L — F'is (X, 1)-
summing. Let z1,---,x, be disjoint vectors in L. Observe that for



268 Hi Ja Song

any choice of ¢, = +1, we have

n n
I " erarll =111 enml | = [Isup |exas] ||
1 1 k<n

n n
= |lsup x| [| =11 1D il | =11zl
k<n 1 1

We make double use of theorem 3 to ensure that 7T : L — F is of
Rademacher cotype X, that is,

n 1 n

n 2

130 17wl eullx < vk (@[ 1 rettyonlfan)'
1 1

Since (f) || X7 ri(H)w]|2dt) /2| = || 7 24|, we arrive at the conclu-
sion. O

In the theorem stated below we establish a result which relates the
Gaussian cotype X operators on C'(K) spaces to the Rademacher co-
type X operators on C'(K) spaces. For this purpose, we need another
quotient formula.

LEMMA 3. Let Y and Z be maximal symmetric Banach sequence
space. If X = M(Y, Z) then for any operator T € B(E, F') we have

7 1(T) = sup{ny 1 (TRM)|R € B(loo, E), My € B(loo, o),
|R|| < 1,0 € By}.

Proof. Let us pick any vectors x1,--- ,x, in F such that
I(zr) 7 < 1.

A quick reference to the defition of ||(||Txk||)T||x assures us that for
any € > 0 there exists a sequence o € By for which || Y] [Tz |lex| x <
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(1+ )| >°7 ITzk||oker]|z. Define an operator R € B({o, E) by R =
o1 er ®xp. It is clear that ||R|| <1 and we have

1 n n
T S I Tzillerllx < 1D ITRMyex| rekl|z
1 1
< w1 (TRM,)||(ex) Y2 < 7% 1 (TRM,)

Thus 7% (T) < (1+¢) 7% (TRM,). This leads to the upper estimate.

To obtain the lower estimate we select a sequence o € By, M, €
B¢, ") and R € B({™, E) with ||R|| < 1. Let S € B({™,,£™) be any
operator with ||S|| < 1. Here m > n. Then ||(Sey)|| V2 < 1. A result
due to B. Maurey [1] guarantees that S has the form S = "7 e, ® g*,
where (¢*)? C €7 with mutually disjoint supports and 0 < ||g*|lec < 1

for k =1,---,n. Define an operator I € B({% () by [ = [ ex®
%. Set 7 = (|| M, g*||o0)?_,. Since there is an increasing sequence

(ni)P_, in {1,2,--- ,m} such that || Myg"*| s = |{€n,, Msg"*)|, it follows
that

n

I7lly =11 (", oneen) izt Iy <UD oncenlly < llolly < 1.
1

Therefore we have
1) ITRM,Sexllexllz = > _(ITRIex||mi)ex|l 2
1 1

<D ITRIekllexllx|ITlly < 7% (T)||(RIex)|[Te*
1
= W?{J(T)“RIH < W?(,l(T)v

and so 7 | (TRM,) < 7% {(T'). This gives us the desired estimate. [J

Next we are concerned with the estimation of Gaussian cotype X
norms of an operator on C(K) in terms of (X, 2)-summing norms of
an operator.
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LEMMA 4. Let X be a maximal symmetric Banach sequence space
and let 1/2 < s < co. Then for any operator T' € B(C(K), F) there is
a constant C' such that

1
ol gcx (T') < sup{ny o(TRM,)|R € B(co, C(K)), My € B(co, co),

”RH <1 ||U||oo,oo,s < 1} < Cgek(T).

Proof. Take R € B(cy, C(K)) with ||R|| < 1. We set o, = (log(k +

1)~k = 1,2,---, so that ||o||cc,co.s = 1. Since supy o (log(k +
1))% < 00, lemma of [10] steps in to ensure that M,, and hence RM,,
is v-summing. Then for any vectors x1,--- ,x, in ¢y, we have

I ITRM sz exllx < g(&(T)(/Q 1> gn(@)RMyay|*dP(w))"/?
1 k=1
< gk (T)my (RM) || (20)T [13°°% < g (T)my (M) || ()7 135

Thus 7% ,(TRM,) < gcx(T) 7y (M,y). This implies the right-hand
inequality.

For the left-hand inequality we choose functions x4, -+, z, in C(K)
with ([, | Yr_i gr(w)zk]|?dP(w))'/? < 1. We invoke Talagrand’s the-
orem [11] to infer that there exist operators U € B(¢5,co) and R €
B(co, C(K)) such that [|[U| < C1, ||R|| <1 and RM,Uey = xj, where
or = (log(k+1))=%, for k=1, -+ ,n. From this we find

I W Tzxllerllx = Y ITRM Uex] exlx
1 1
< 1% o(TRM)[|(Uer) T35 = 7% o(TRM,) | U|.
As a result, gek (T) < Oy - 7% o(T'RM,). This gives us the left-hand

inequality.
OJ

Having these preliminary results we draw the theorem given below.
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THEOREM 5. Let 2 < ¢ < oo and let X be a g-convex maximal
symmetric Banach sequence space. If Y = M(log o0(log €)%, X), 3 <
s < oo, then for any operator T' € B(C(K), F) there is a constant C
such that & rcf(T) < gcx (T) < Crci (7).

Proof. First note that g-convexity of X implies the ¢-convexity of
Y = M(ls,00(logl)®, X). For any choice of vectors yi,--- ,y, in Y,
we have

n
1O w1Vl
j=1
—sup{HZZ DY 9oen]x ¢ (|0 ]loo00s < 1}
<sup{||Z!Zyg Yorer|) Y| x  [o]lso.c0s < 1}
< K(X sup{ZHZyg (R)orerl|%) Y < [o]loo00s < 1}

< Kq(X)(ZI|yjH§/)1/q-

An appeal to lemma 4 in combination with theorem 3 and lemma
3 reveals that gcy (7)) and my-(T) are equivalent. It takes another
appeal to theorem 3 to see that 7y (T) and rcy.(T) are equivalent.
This completes the proof. O

Theorem 5 permits us to find a necessary condition which implies
that an operator with domain a C'(K) space is of Gaussian cotype g.

COROLLARY. Let 2 < q¢ < oo and % < s < oo. If an operator
T € B(C(K),F) is of Gaussian cotype q then (>, (x,(T)(log(k +
1))V < 0.

Proof. Using first theorem 5 and then theorem 3 we get that T is
(£4.4(log £)~*,2)-summing because ¢, 4(log £)™® = M (loo,c0(log €)%, £,).
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For simplicity write Y = £, ,(logf)~®. Choose any operator U in
B(l3,C(K)). Lemma 2.7.1. of [8] tells us that for every € > 0, there
exists an orthonormal family {01, - ,0,} in ¢ such that ay(TU) <
(1 +¢)||TUok|| for k = 1,--- ,n, where (||TUog||) is a decreasing se-
quence. Thus we have

n

(D (@ar(TU) (log(k +1)~*)) " < (1 +€) [(ITUox])]

q,9,—S

< (1+€) my2(TU) [[(0n) 3 < (1 + €) my2(T) | U|.

So we end up with (3, (24 (T) (log(k + 1))~*)9)1/4 < oo.
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