Kangweon-Kyungki Math. Jour. 13 (2005), No. 2, pp. 249-254

SEVERAL TYPES FUZZY HALF-COMPACTNESS ON AN INTUITIONISTIC FUZZY TOPOLOGICAL SPACE

KYUNG-HO MIN, WON KEUN MIN* AND CHUN-KEE PARK

ABSTRACT. In this paper, we introduce the concepts of intuitionistic fuzzy half-compactness, nearly intuitionistic fuzzy half-compactness and almost intuitionistic fuzzy half-compactness defined by intuitionistic gradations of openness, and obtain some characterizations.

1. Introduction

In 1992 [8], Chattopadyay et al. introduced the concept of fuzzy topology redefined by a gradation of openness and investigated some fundamental properties. In particular, Gayyar, Kerre, Ramadan [7] and Demirci [5, 6] introduced the concepts of fuzzy closure and fuzzy interior of a fuzzy set, and obtained some properties of them. Atanassov [1] introduced the concept of intuitionistic fuzzy set which is a generalization of fuzzy set in Zadeh's sense [12]. Çoker introduced the concept of intuitionistic fuzzy topological spaces [4], which it is an extended concept of fuzzy topological spaces [2] in Chang's sense. In 2002, Mondal and Samanta introduced and investigated the concept of intuitionistic gradation of openness [9] which is a generalization of the concept of gradation of openness defined by Chattopadyay. In [10] we introduced the concepts of half-interior, half-closure, half-gp-map and half-gp-open map and also obtained some characterizations.

In this paper, we introduce the concepts of intuitionistic fuzzy halfcompactness, nearly intuitionistic fuzzy half-compactness and almost

Received September 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: intuitionistic gradation of openness, half-interior, halfclosure, half-gp-map, half-gp-open map, intuitionistic fuzzy half-compact, nearly intuitionistic fuzzy half-compactness, almost intuitionistic fuzzy half-compactness.

^{*}Corresponding author.

intuitionistic fuzzy half-compactness in intuitionistic fuzzy topological spaces and investigate some properties of them.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. I^X will denote the set of all fuzzy sets of X. 0_X and 1_X will denote the characteristic functions of ϕ and X, respectively.

DEFINITION 2.1 ([3, 8, 11]). Let X be a non-empty set and $\tau : I^X \to I$ be a mapping satisfying the following conditions:

(O1) $\tau(0_X) = \tau(1_X) = 1;$

(O2) $\forall A, B \in I^X, \ \tau(A \cap B) \ge \tau(A) \land \tau(B);$

(O3) For every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau(\bigcup_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau(A_i)$.

Then the mapping $\tau : I^X \to I$ is called a *fuzzy topology* (or *gradation* of openness [10]) on X. We call the ordered pair (X, τ) a *fuzzy topological* space. The value $\tau(A)$ is called the *degree of openness* of A.

DEFINITION 2.2 ([1]). An *intuitionistic fuzzy set* A in a set X is an object having the form

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

DEFINITION 2.3 ([9]). An intuitionistic gradation of openness (briefly IGO) of fuzzy subsets of a set X is an ordered pair (τ, τ^*) of functions $\tau, \tau^* : I^X \to I$ such that

(IGO1) $\tau(A) + \tau^*(A) \leq 1$, for all $A \in I^X$; (IGO2) $\tau(0_X) = \tau(1_X) = 1$, $\tau^*(0_X) = \tau^*(1_X) = 0$; (IGO3) $\forall A, B \in I^X$, $\tau(A \cap B) \geq \tau(A) \wedge \tau(B)$ and $\tau^*(A \cap B) \leq \tau^*(A) \vee \tau^*(B)$;

(IGO4) For every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau(\bigcup_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau(A_i)$ and $\tau^*(\bigcup_{i \in J} A_i) \le \bigvee_{i \in J} \tau^*(A_i)$.

Then the triplet (X, τ, τ^*) is called an *intuitionistic fuzzy topological* space (briefly *IFTS*) on X. τ and τ^* may be interpreted as gradation of openness and gradation of nonopenness, respectively.

250

DEFINITION 2.4 ([9]). Let X be a nonempty set and two functions $\mathcal{F}, \mathcal{F}^* : I^X \to I$ be satisfying (IGC1) $\mathcal{F}(A) + \mathcal{F}^*(A) \leq 1$, for all $A \in I^X$; (IGC2) $\mathcal{F}(0_X) = \mathcal{F}(1_X) = 1, \mathcal{F}^*(0_X) = \mathcal{F}^*(1_X) = 0$; (IGC3) $\forall A, B \in I^X, \ \mathcal{F}(A \cup B) \geq \mathcal{F}(A) \land \mathcal{F}(B)$ and $\mathcal{F}^*(A \cup B) \leq \mathcal{F}^*(A) \lor \mathcal{F}^*(B)$; (IGC4) for every subfamily $\{A_i : i \in J\} \subseteq I^X, \ \mathcal{F}(\cap_{i \in J} A_i) \geq \wedge_{i \in J} \mathcal{F}(A_i)$ and $\mathcal{F}^*(\cap_{i \in J} A_i) \leq \bigvee_{i \in J} \mathcal{F}^*(A_i)$.

Then the ordered pair $(\mathcal{F}, \mathcal{F}^*)$ is called an *intuitionistic gradation of* closedness [9] (briefly IGC) on X. \mathcal{F} and \mathcal{F}^* may be interpreted as gradation of closedness and gradation of nonclosedness, respectively.

THEOREM 2.5 ([9]). Let X be a nonempty set. If (τ, τ^*) is an IGO on X, then the pair $(\mathcal{F}, \mathcal{F}^*)$, defined by $\mathcal{F}_{\tau}(A) = \tau(A^c)$, $\mathcal{F}^*_{\tau^*}(A) = \tau^*(A^c)$ where A^c denotes the complement of A, is an IGC on X. And if $(\mathcal{F}, \mathcal{F}^*)$ is an IGC on X, then the pair $(\tau_{\mathcal{F}}, \tau^*_{\mathcal{F}^*})$, defined by $\tau_{\mathcal{F}}(A) = \mathcal{F}(A^c)$, $\tau^*_{\mathcal{F}^*}(A) = \mathcal{F}^*(A^c)$ is an IGO on X.

DEFINITION 2.6 ([9]). Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs. A mapping $f: X \to Y$ is a gp-map if $\tau(f^{-1}(A)) \ge \sigma(A)$ and $\tau^*(f^{-1}(A)) \le \sigma^*(A)$ for every $A \in I^Y$.

DEFINITION 2.7 ([10]). Let (X, τ, τ^*) be an IFTS and $A \in I^X$. Then the *half-closure* (resp., *half-interior*) of A, denoted by A_- (resp., A_o), is defined by $A_- = \bigcap \{K \in I^X : \mathcal{F}_{\tau}(A) > 0 \text{ and } \mathcal{F}^*_{\tau^*}(A) \leq \frac{1}{2}, A \subseteq K \}$ (resp., $A_o = \bigcup \{K \in I^X : \tau(K) > 0 \text{ and } \tau^*(A) \leq \frac{1}{2}, K \subseteq A \}$).

DEFINITION 2.8 ([10]). Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs. A mapping $f : X \to Y$ is a *half-gp-map* iff for every $A \in I^Y$ such that $\sigma(A) > 0$ and $\sigma^*(A) \leq \frac{1}{2}$, $\tau(f^{-1}(A)) > 0$ and $\tau^*(f^{-1}(A)) \leq \frac{1}{2}$.

DEFINITION 2.9 ([10]). Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs. A mapping $f: X \to Y$ is called a *half-gp-open* map iff for every $A \in I^X$ such that $\tau(A) > 0$ and $\tau^*(A) \leq \frac{1}{2}$, $\sigma(f(A)) > 0$ and $\sigma^*(f(A)) \leq \frac{1}{2}$.

Kyung-Ho Min, Won Keun Min and Chun-Kee Park

3. Several types compactness in intuitionistic fuzzy topological spaces

In this section, we introduce the concepts of intuitionistic fuzzy halfcompactness, nearly intuitionistic fuzzy half-compactness and almost intuitionistic fuzzy half-compactness in intuitionistic fuzzy topological spaces and investigate some properties of them.

DEFINITION 3.1. An IFTS (X, τ, τ^*) is called *intuitionistic fuzzy half-compact* iff for every family $\{A_i \in I^X : \tau(A_i) > 0 \text{ and } \tau^*(A_i) \leq \frac{1}{2}, i \in J\}$ covering X, there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} A_i = 1_X$.

THEOREM 3.2. Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs and $f : X \to Y$ a surjective half-gp-map. If (X, τ, τ^*) is intuitionistic fuzzy half-compact, then so is (Y, σ, σ^*) .

Proof. Let a family $\{A_i \in I^Y : \sigma(A_i) > 0 \text{ and } \sigma^*(A_i) \leq \frac{1}{2}, i \in J\}$ be a cover of Y; then by Definition 2.8, the family $\{f^{-1}(A_i) \in I^X : \tau(f^{-1}(A_i)) > 0 \text{ and } \tau^*(f^{-1}(A_i)) \leq \frac{1}{2}, i \in J\}$ covers X. From the surjectivity of f and intuitionistic fuzzy half-compactness, it follows that Y also is intuitionistic fuzzy half-compact.

DEFINITION 3.3. An IFTS (X, τ, τ^*) is called *nearly intuitionistic* fuzzy half-compact iff for every family $\{A_i \in I^X : \tau(A_i) > 0 \text{ and } \tau^*(A_i) \leq \frac{1}{2}, i \in J\}$ covering X, there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} ((A_i)_{-})_o = 1_X$.

THEOREM 3.4. An intuitionistic fuzzy half-compact space (X, τ, τ^*) is nearly intuitionistic half-compact.

Proof. Let $\{A_i \in I^X : \tau(A_i) > 0 \text{ and } \tau^*(A_i) \leq \frac{1}{2}, i \in J\}$ be a cover of X; then there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} A_i = 1_X$. Since $\tau(A_i) > 0$ for all $i \in J$, we have $A_i = (A_i)_o \subseteq (A_{i-})_o$. Consequently the IFTS (X, τ, τ^*) is nearly intuitionistic fuzzy half-compact. \Box

REMARK 3.5. In Theorem 3.4, the converse of implication may not be true. For if (X, τ, τ^*) is an IFTS and $\tau^*(\mu) = 0$ for all $\mu \in I^X$, then the (X, τ, τ^*) is a fuzzy topological space in Sostak's sense, that is, a fuzzy topological space is a special case in IFTSs. And in general, a nearly fuzzy compact space is not fuzzy compact, so we can say an nearly intuitionistic fuzzy half-compact space (X, τ, τ^*) is not always intuitionistic fuzzy half-compact.

252

DEFINITION 3.6. An IFTS (X, τ, τ^*) is called *almost intuitionistic* fuzzy half-compact iff for every family $\{A_i \in I^X : \tau(A_i) > 0 \text{ and } \tau^*(A_i) \leq \frac{1}{2}, i \in J\}$ covering X, there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} A_{i-} = 1_X$.

THEOREM 3.7. A nearly intuitionistic fuzzy half-compact space (X, τ, τ^*) is almost intuitionistic fuzzy half-compact.

Proof. Let $\{A_i \in I^X : \tau(A_i) > 0 \text{ and } \tau^*(A_i) \leq \frac{1}{2}, i \in J\}$ be a cover of X; then there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} (A_{i-})_o = 1_X$. Since $(A_{i-})_o \subseteq A_{i-}$ for each $i \in J$, we can say (X, τ, τ^*) is almost intuitionistic fuzzy half-compact.

As Remark 3.5, we can show that the almost intuitionistic fuzzy halfcompactness is not always the nearly intuitionistic fuzzy half-compactness.

THEOREM 3.8. Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs and $f : X \to Y$ a surjective half-gp-map. If X is almost intuitionistic fuzzy half-compact, then so is Y.

Proof. Let $\{A_i \in I^Y : \sigma(A_i) > 0 \text{ and } \sigma^*(A_i) \leq \frac{1}{2}, i \in J\}$ be a cover of Y. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is a half-gp-map, $\{f^{-1}(A_i) \in I^X : \tau(f^{-1}(A_i)) > 0 \text{ and } \tau^*(f^{-1}(A_i)) \leq \frac{1}{2}, i \in J\}$ is a cover of X.

Since X is almost intuitionistic fuzzy half-compact, there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} f^{-1}(A_i)_- = 1_X$. From the surjectivity of f, (Y, σ, σ^*) is almost intuitionistic fuzzy half-compact.

COROLLARY 3.9. Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs and $f : X \to Y$ a surjective half-gp-map. If X is nearly intuitionistic fuzzy half-compact, then Y is almost intuitionistic fuzzy half-compact.

THEOREM 3.10. Let (X, τ, τ^*) and (Y, σ, σ^*) be two IFTSs and $f : X \to Y$ a surjective, half-gp-map and half-gp-open map. If X is intuitionistic nearly half-compact, then so is Y.

Proof. Let a family $\{A_i \in I^Y : \sigma(A) > 0 \text{ and } \sigma^*(A_i) \leq \frac{1}{2}, i \in J\}$ be a cover of Y. Since X is nearly intuitionistic fuzzy half-compact, there exists a finite subset J_o of J such that $\bigcup_{i \in J_o} ((f^{-1}(A_i))_{-})_o = 1_X$. From Kyung-Ho Min, Won Keun Min and Chun-Kee Park

the surjectivity of f, we have

$$1_Y = \bigcup_{i \in J_o} f(((f^{-1}(A_i))_{-})_o)$$
$$\subseteq \bigcup_{i \in J_o} (f(f^{-1}(A_i))_{-})_o$$
$$\subseteq \bigcup_{i \in J_o} (f(f^{-1}((A_i)_{-})_o)$$
$$= \bigcup_{i \in J_o} ((A_i)_{-})_o.$$

Hence $\bigcup_{i \in J_o} ((A_i)_{-})_o = 1_Y$. Thus (Y, σ) is nearly intuitionistic fuzzy half-compact.

References

- Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and System, vol. 20(1) (1986), pp. 87–96.
- C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl., vol. 24 (1968), pp. 182–190.
- K. C. Chattopadhyay, R. N. Hazra, S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems, vol. 49 (1992) pp. 237–242.
- D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, vol. 88 (1997), pp. 81–89.
- M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems, vol. 90 (1997) pp. 83–88.
- *Three topological structures of smooth topological spaces*, Fuzzy Sets and Systems, vol. 101 (1999), pp. 185–190.
- M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems, vol. 62 (1994) pp. 193–202.
- R. N. Hazra, S. K. Samanta, K. C. Chattopadhyay, *Fuzzy topology redefined*, Fuzzy Sets and Systems, vol. 45 (1992) pp. 79–82.
- T. K. Mondal and S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems, vol. 131 (2002) pp. 323–336.
- W. K. Min, C. K. Park and K. H. Min, *Half-gp-maps on intuitionistic fuzzy topological spaces*, Kangweon-Kyungki Math. J., vol. 12(2) (2004) pp. 177–183.
- A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, vol. 48 (1992), pp. 371–375.
- 12. L. A. Zadeh, *Fuzzy sets*, Inform. and Control, vol. 8 (1965) pp. 338–353.

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr, ckpark@kangwon.ac.kr

254