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SOME PROPERTIES OF PRODUCT FUZZY GROUPS,
IDEALS, AND SUBRINGS

Inheung Chon

Abstract. We define a product fuzzy group, which is weaker than
the standard fuzzy group defined by Rosenfeld, and characterize
some properties of product fuzzy groups, product fuzzy ideals, and
product fuzzy subrings.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh ([6]). Rosen-
feld ([2]) used this concept to formulate the notion of fuzzy groups.
Since then, many other fuzzy algebraic concepts based on the Rosen-
feld’s fuzzy groups were developed. Anthony and Sherwood ([1]) re-
defined fuzzy groups in terms of t-norm which replaced the minimum
operation of Rosenfeld’s definition. Some properties of these redefined
fuzzy groups, which we call t-fuzzy groups, have been developed by
Sherwood ([4]), Sessa ([3]), Sidky and Mishref ([5]). However the def-
inition of the t-fuzzy groups seems to be too general. We define a
product fuzzy group as a special case of the t-fuzzy groups, which is
weaker than the fuzzy group defined by Rosenfeld ([2]), and develop
some properties of product fuzzy groups, product fuzzy ideals, and
product fuzzy subrings.

2. p-fuzzy groups, p-fuzzy ideals, and p-fuzzy subrings
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Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B. The set {x ∈ X : B(x) > 0} is
called the support of B and is denoted by supp(B). A fuzzy set in X is
called a fuzzy point iff it takes the value 0 for all y ∈ X except one, say,
x ∈ X. If its value at x is α (0 < α ≤ 1), we denote this fuzzy point by
xα, where the point x is called its support. The fuzzy point xα is said
to be contained in a fuzzy set A, denoted by xα ∈ A, iff α ≤ A(x).

For fuzzy sets U, V in a set X, U ◦V has been defined in most articles
by

(U ◦ V )(x) =

{
sup
ab=x

min(U(a), V (b)) if ab = x

0 if ab 6= x.

We weaken this definition as follows.

Definition 2.2. Let X be a set and let U, V be two fuzzy sets in
X. U ◦ V is defined by

(U ◦ V )(x) =

{
sup
ab=x

U(a)V (b) if ab = x

0 if ab 6= x.

Proposition 2.3. Let A,B be fuzzy sets in a groupoid X and let
xp, yq be fuzzy points in X. Then xp ◦ yq = (xy)pq and A ◦ B =

∪
xp∈A,yq∈B

xp ◦ yq, where (xp ◦ yq)(z) = sup
cd=z

xp(c)yq(d).

Proof. (xp ◦ yq)(xy) = sup
ab=xy

xp(a)yq(b) = pq. Thus (xp ◦ yq) =

(xy)pq. If xp ∈ A and yq ∈ B, then A(s) ≥ xp(s) and B(t) ≥
yq(t). Thus (A ◦ B)(z) = sup

st=z
A(s)B(t) ≥ sup

st=z
sup

xp∈A,yq∈B
xp(s)yq(t) =

sup
xp∈A,yq∈B

sup
st=z

xp(s)yq(t) = sup
xp∈A,yq∈B

(xp ◦ yq)(z) = (∪ xp ◦ yq)(z).

Since sA(s) ∈ A and tB(t) ∈ B, ( ∪
xp∈A,yq∈B

xp ◦ yq)(z) = sup
xp∈A,yq∈B

sup
st=z

xp(s)yq(t) ≥ sup
st=z

sA(s)(s)tB(t)(t) = sup
st=z

A(s)B(t) = (A ◦B)(z). ¤
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Definition 2.4. Let X be a group. We define U−1 by U−1(x) =
U(x−1) for x ∈ X.

Proposition 2.5. Let X be a set. Then

(1) If X is associative, commutative, respectively, then so is ◦.
(2) If X has a unit e, then A ◦ ep = ep ◦A for a fuzzy set A in X.

Proof. Straightforward.
¤

The standard definition of a fuzzy group by Rosenfeld ([2]) is that a
fuzzy set B in a group X is a fuzzy group iff B(xy) ≥ min (B(x), B(y))
and B(x−1) = B(x) for all x, y ∈ X. We weaken this definition as
follows.

Definition 2.6. Let S be a groupoid. A function B : S → [0, 1] is
a product fuzzy groupoid in S iff for every x, y in S, B(xy) ≥ B(x)B(y).
We denote a product fuzzy groupoid by a p-fuzzy groupoid. If X is a
group, a p-fuzzy groupoid B in X is a p-fuzzy group in X iff for each
x ∈ X, B(x−1) = B(x). We denote a product fuzzy group by a p-fuzzy
group.

Since min(p, q) ≥ pq, our definition of a p-fuzzy group is weaker than
the standard definition by Rosenfeld ([2]). It is easy to see that if G is
a fuzzy group in a group X and e is the identity of X, G(e) ≥ G(x) for
all x ∈ X. If G is a p-fuzzy group in a group X, G(e) = G(xx−1) ≥
G(x)G(x−1) = [G(x)]2 for all x ∈ X.

Proposition 2.7. Let G be a fuzzy subset in a group X such that
G(e) = 1, where e is the identity of X. Then G is a p-fuzzy group iff
G(xy−1) ≥ G(x)G(y) for all x, y ∈ X.

Proof. Suppose G is a p-fuzzy group. Then

G(xy−1) ≥ G(x)G(y−1) = G(x)G(y).

Suppose G(xy−1) ≥ G(x)G(y). Then

G(x−1) = G(ex−1) ≥ G(e)G(x) = G(x) = G(ex)

≥ G(e)G(x−1) = G(x−1).
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That is, G(x) = G(x−1). G(xy) = G(x(y−1)−1) ≥ G(x)G(y−1) =
G(x)G(y). ¤

Proposition 2.8. Let G be a p-fuzzy groupoid in a group X such
that G(a) = G(a−1) = 1. Let ra : X → X be a right translation
defined by ra(x) = xa and let la : X → X be a left translation defined
by la(x) = ax. Then ra(G) = la(G) = G.

Proof.

ra(G)(x) = sup
z∈r−1

a (x)

G(z) = G(xa−1)

≥ G(x)G(a−1) = G(x)G(a) = G(x) = G(xa−1a)

≥ G(xa−1)G(a) = G(xa−1) = ra(G)(x).

Thus ra(G)(x) ≥ G(x) ≥ ra(G)(x). That is, ra(G) = G. Similarly we
may show la(G) = G. ¤

Definition 2.9. Let B be a fuzzy set in a groupoid X. B is a
p-fuzzy left (or right) ideal of X iff B(xy) ≥ B(y) (or B(xy) ≥ B(x))
for all x, y ∈ X. B is a p-fuzzy ideal of X iff B is p-fuzzy left and right
ideal of X.

Proposition 2.10. Let B be a fuzzy subset in a semigroup S.
Then S ◦B (or B ◦ S) is a p-fuzzy left (or right) ideal of S.

Proof. From Proposition 2.5, (S◦S)◦B = S◦(S◦B) and B◦(S◦S) =
(B ◦S)◦S. Since S(x) = 1 for all x ∈ S, S ◦S ⊆ S from Definition 2.2.
Since S(x) = 1, (S ◦B)(xy) ≥ ((S ◦ S) ◦B)(xy) = (S ◦ (S ◦B))(xy) ≥
S(x)(S ◦B)(y) = (S ◦B)(y). Thus S ◦B is a p-fuzzy left ideal. Since
S(y) = 1, (B ◦ S)(xy) ≥ (B ◦ (S ◦ S))(xy) = ((B ◦ S) ◦ S)(xy) ≥
(B ◦ S)(x)S(y) = (B ◦ S)(x). Thus B ◦ S is a p-fuzzy right ideal. ¤

Proposition 2.11. Let B be a fuzzy set in a semigroup S. Then
S ◦B ◦ S is a p-fuzzy ideal of S.
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Proof. From Proposition 2.5, (S ◦ S) ◦ B ◦ S = S ◦ (S ◦ B ◦ S) and
S ◦B ◦ (S ◦S) = (S ◦B ◦S)◦S. Since S(x) = 1 for all x ∈ S, S ◦S ⊆ S
from Definition 2.2. Thus (S ◦ B ◦ S)(xy) ≥ ((S ◦ S) ◦ B ◦ S)(xy) =
(S◦(S◦B◦S))(xy) ≥ S(x)(S◦B◦S)(y) = (S◦B◦S)(y). That is, S◦B◦S
is a p-fuzzy left ideal. Since (S ◦B ◦ S)(xy) ≥ (S ◦B ◦ (S ◦ S))(xy) =
((S ◦B ◦ S) ◦ S)(xy) ≥ (S ◦B ◦ S)(x)S(y) = (S ◦B ◦ S)(x), S ◦B ◦ S
is a p-fuzzy right ideal. Hence S ◦B ◦ S is a p-fuzzy ideal. ¤

Definition 2.12. Let X be a ring with respect to two binary op-
erations + and ·. Let B be a fuzzy set in X. B is called a p-fuzzy
subring of X if B is a p-fuzzy group for the operation + and A is a
p-fuzzy groupid for the operation · in X.

Theorem 2.13. Let A and B be p-fuzzy subrings of a commutative
ring X. Then A ◦B is a p-fuzzy subring of X.

Proof. Since X is associative and commutative with respect to the
operation +, ◦ is associative and commutative with respect to + by
Proposition 2.5. Thus (A◦B)◦(A◦B) = A◦(B◦A)◦B = A◦(A◦B)◦B =
(A◦A)◦(B◦B). Let xp, yq ∈ A. Then A(x) ≥ p and A(y) ≥ q. Since A
is a p-fuzzy group with respect to +, (xp ◦ yq)(z) = pq ≤ A(x)A(y) ≤
A(x + y) = A(z) for z = x + y and (xp ◦ yq)(z) = 0 ≤ A(z) for
z 6= x + y. That is, xp ◦ yq ∈ A. By Proposition 2.3, (A ◦ A)(z) =
[ ∪
xp∈A,yq∈A

xp ◦ yq](z) = sup
xp∈A,yq∈A

(xp ◦ yq)(z). Since xp ◦ yq ∈ A for

xp, yq ∈ A, sup
xp∈A,yq∈A

(xp ◦yq)(z) ≤ A(z). Thus A◦A ⊆ A with respect

to +. Similarly we may show B ◦ B ⊆ B with respect to +. Hence
(A ◦ B) ◦ (A ◦ B) = (A ◦ A) ◦ (B ◦ B) ⊆ A ◦ B. Thus (A ◦ B)(x +
y) ≥ [(A ◦ B) ◦ (A ◦ B)](x + y) = sup

a+b=x+y
[(A ◦ B)(a)(A ◦ B)(b)] ≥

(A◦B)(x)(A◦B)(y). That is, A◦B is a p-fuzzy groupoid with respect
to +. (A ◦B)(−x) = sup

y+z=−x
A(y)B(z) = sup

(−z)+(−y)=x

B(−z)A(−y) =

(B ◦ A)(x). Since ◦ is commutative, (A ◦ B)(−x) = (B ◦ A)(x) =
(A ◦ B)(x). Hence A ◦ B is a p-fuzzy group with respect to +. Since
X is associative and commutative with respect to the operation ·, ◦
is associative and commutative with respect to · by Proposition 2.5.
Thus (A ◦ B) ◦ (A ◦ B) = (A ◦ A) ◦ (B ◦ B). Let xp, yq ∈ A. Then
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A(x) ≥ p and A(y) ≥ q. Since A is a p-fuzzy group with respect to
·, (xp ◦ yq)(z) = pq ≤ A(x)A(y) ≤ A(x · y) = A(z) for z = x · y and
(xp ◦ yq)(z) = 0 ≤ A(z) for z 6= x · y. That is, xp ◦ yq ∈ A. By the same
way as shown for +, we may show A ◦ A ⊆ A and B ◦ B ⊆ B with
respect to ·. Hence (A ◦B) ◦ (A◦B) = (A ◦A) ◦ (B ◦B) ⊆ A ◦B. Thus
(A◦B)(x ·y) ≥ [(A◦B)◦(A◦B)](x ·y) = sup

a·b=x·y
(A◦B)(a)(A◦B)(b) ≥

(A◦B)(x)(A◦B)(y). That is, A◦B is a p-fuzzy groupoid with respect
to ·. Hence A ◦B is a p-fuzzy subring of X. ¤

Theorem 2.14. Let A and B be p-fuzzy groups in an abelian group
X. Then A ◦B is a p-fuzzy group.

Proof. The proof is similar to that of Theorem 2.13. ¤

Corollary 2.15. Let A and B be p-fuzzy groupoids in a commu-
tative semigroup X. Then Then A ◦B is a p-fuzzy groupoid.

Proof. Immediate from Theorem 2.14. ¤
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