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SUPERCONVERGENCE OF CRANK-NICOLSON MIXED

FINITE ELEMENT SOLUTION OF PARABOLIC

PROBLEMS

Dae Sung Kwon and Eun-Jae Park*

Abstract. In this paper we extend the mixed finite element method
and its L2−error estimate for postprocessed solutions by using Crank-
Nicolson time-discretization method.

Global O(h2+(∆t)2)-superconvergence for the lowest order Raviart-
Thomas element (Q0 −Q1,0 ×Q0,1) are obtained. Numerical exam-
ples are presented to confirm superconvergence phenomena.

1. Introduction

We show a practical discretization technique for the parabolic equa-
tions based on the mixed finite element method in a finite element space
and study how we could get the global superconvergence for the mixed
approximate solutions in the rectangular Raviart-Thomas elements of or-
der 0. There are several time-discretization methods such as Backward
Euler method, Crank-Nicolson method, and Runge-Kutta method [3].
We here use Crank-Nicolson method and prove optimal order of conver-
gence. As a result, O(h2+(∆t)2) - superconvergence for Raviart-Thomas
element Q0−Q1,0×Q0,1 in regular mesh (not necessarily uniform) is de-
rived.

The paper is organized as follows. The Raviart-Thomas space is in-
troduced in §2. In §3, we devote to descretize the parabolic problem by
the Crank-Nicolson mixed finite element method. In §4, we derive the
main theory for superconvergence. In §5, Numerical results are given to
support the theoretical results.
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2. The Raviart-Thomas Elements

Raviart and Thomas [7] introduced a family of mixed finite elements
that satisfy the Ladyzhenskaya-Babuska-Brezzi condition. Their ele-
ments are defined as follows:
Let K be an ordinary rectangle or triangle and j a non-negative integer.
Set

RTj(K) = V (j, K)×H(j, K), j ≥ 0.(1)

If K is rectangle, set V (j, K) = Qj,j(K) ≡ Qj(K), H(j, K) =
Qj+1,j(K)×Qj,j+1(K). Then the finite element spaces Vh×Hh of index
j are defined by

Vh = {v ∈ L2(Ω) : v|K ∈ V (j, K),∀K ∈ Th},(2)

Hh = {p ∈ H(div; Ω) : p|K ∈ H(j, K),∀K ∈ Th},(3)

where H(div; Ω) = {p = (p1, p2) : pi ∈ L2(Ω), i = 1, 2, and divp ∈
L2(Ω)} and Qm,n = span{xiyj : 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

If K is triangle, set V (j, K) = Pj(K), H(j, K) = Pj(K)2 × xP̂j(K),

where P̂j(K) is the set of homogeneous polynomials of degree j in the
variable x = (x, y).

The local Raviart-Thomas projection

jh : H(div; K) → H(j,K), ∀K ∈ Th(4)

satisfies the following properties [8, 16, 17]:

(div(p− jhp), v) = 0, ∀v ∈ Vh,(5)

‖jhp− p‖0,K ≤ Chr‖p‖r,K , 1 ≤ r ≤ j + 1,(6)

divjh = ihdiv,(7)

where ih is the local L2−projection: L2(K) → V (j, K). Furthermore,
we have [8]

(divq, u− ihu) = 0, ∀q ∈ Hh,(8)

‖ihu− u‖0,K ≤ Chr‖u‖r,K , 0 ≤ r ≤ j + 1.(9)

We choose the lowest order rectangular Raviart-Thomas Element,
Q0 −Q1,0 ×Q0,1, which is described by

{
Vh = {v ∈ L2(Ω) : v|K ∈ Q0(K),∀K ∈ Th},
H0

h = {q ∈ H0(div; Ω) : q|K ∈ Q1,0 ×Q0,1,∀K ∈ Th},(10)
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where H0(div; Ω) = {q ∈ L2(Ω)2 : divq ∈ L2(Ω), q · n = 0 on ∂Ω} ⊂
H(div; Ω).
The local L2-projection operator and the local Raviart-Thomas operator
are defined on Q0 −Q1,0 ×Q0,1 element by

{
ihu ∈ Q0,∫

K
(u− ihu) = 0 ,

{
jh ∈ Q1,0 ×Q0,1,∫

si
(p− jhp) · nds = 0, i = 1, 2, 3, 4 ,

where n is the outward unit normal vector to ∂K and si is the side of
each rectangle elements.

3. Crank-Nicolson Mixed Finite Element Approximation

Consider the mixed approximation for the parabolic equation with
Neumann boundary condition.

ut − div(a(x)∇u(x, t)) + b(x)u(x, t) = f(x, t) in Ω× [0, T ),
a(x)∇u · n = 0 on ∂Ω× [0, T ), u(·, 0) = g(x) in Ω× {0},(11)

where Ω is a bounded convex domain in the plane and ∂Ω is the boundary
of Ω. For simplicity of presentation, we assume that a(x) = 1, b(x) = 0.

A mixed formulation for (11) is obtained by introducing a flux vari-
able:

p = ∇u,(12)

which is of more interest in many applications in science and engineering.
The problem (11) is equivalent to seeking (u,p) such that

∇u− p = 0 in Ω× [0, T ), ut − divp = f in Ω× [0, T ),
p · n = 0 on ∂Ω× [0, T ), u(·, 0) = g(·) in Ω× {0}.(13)

Let V = L2(Ω) and H = H0(div; Ω) = {q ∈ L2(Ω)2 : divq ∈
L2(Ω), q · n = 0 on ∂Ω} ⊂ H(div; Ω). Using integration by parts,
we arrive at the following mixed variational form for (13):

Find (u,p) ∈ V ×H such that

(
∂u

∂t
, v)− (divp, v) = (f, v), ∀v ∈ V, ∀t ∈ [0, T ),(14)

(p,q) + (u, divq) = 0, ∀q ∈ H, ∀t ∈ [0, T ),(15)

u(·, 0) = g.(16)

Note that the Raviart-Thomas finite element space Vh×H0
h ⊂ V ×H

satisfies divH0
h ⊂ Vh and the Ladyzhenskaya-Babuska-Brezzi condition.
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Let ∆t = T
N

be the time step and un
h be the approximation of u(t)

at t = tn = n∆t in Vh. Applying the Crank-Nicolson scheme to time
derivative ∂u

∂t
around the point tn− 1

2
= (n− 1

2
)∆t, we obtain the following

fully discrete formulation:

For each 1 ≤ n ≤ N ,

(
un

h−un−1
h

∆t
, v)− (div(ph

n+ph
n−1

2
), v) = (f(tn)+f(tn−1)

2
, v), ∀v ∈ Vh,(17)

(ph
n+ph

n−1

2
, q) + (

un
h+un−1

h

2
, divq) = 0, ∀q ∈ H0

h,(18)

(u0
h, v) = (ihg, v), ∀v ∈ Vh, (ph

0, q) + (ihg, divq) = 0, ∀q ∈ H0
h.(19)

Let εn = un
h − un and ηn = ph

n − pn. Using (17)-(19), we obtain the
error equations as follows.

(
εn − εn−1

∆t
, v)− (div(

ηn + ηn−1

2
), v)(20)

= (
un − un−1

∆t
− ∂un− 1

2

∂t
, v)− (

un
t + un−1

t

2
− ∂un− 1

2

∂t
, v), ∀v ∈ Vh,

(
ηn + ηn−1

2
,q) + (

εn + εn−1

2
, divq) = 0, ∀q ∈ H0

h for n = 1, 2, ..., N.(21)

Here, un−un−1

∆t
− ∂un− 1

2

∂t
is the truncation error associated with the Crank-

Nicolson method to the time derivative.

4. Global Superconvergence

In the following discussion, we assume that (xK , yK) is the center of
K and si (i = 1, 2, 3, 4) is its side. s1 and s3 are parallel to y-direction
and s2 and s4 are parallel to x-direction. C denotes a positive constant
independent to h, not necessarily the same at each occurrence. ‖ · ‖m

denote the norm ‖ · ‖m,2,Ω, in particular, ‖ · ‖ = ‖ · ‖0.

Theorem 4.1. If p ∈ [H2(Ω)]2, then

(p− jhp,q) ≤ Ch2‖p‖2‖q‖.
Proof. See J.Pan [11].
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Lemma 4.1. For each n, we have

‖un + un−1

2
− un− 1

2‖2 ≤ C(∆t)3

∫ tn

tn−1

‖∂2u

∂t2
‖2dt,

‖un − un−1

∆t
− u

n− 1
2

t ‖2 ≤ C(∆t)3

∫ tn

tn−1

‖∂3u

∂t3
‖2dt,

where C is a positive constant.

Proof. Use the Taylor theorem with the integral remainder and Hölder
inequality.

Theorem 4.2. For Q0 Q1,0 × Q0,1Element, there exists a positive
constant C such that

‖un
h − ihu

n‖+ ‖ph
n − jhp

n‖

≤ C( (∆t)2(

∫ tn

0

‖∂3u

∂t3
‖2dt)

1
2 + h2(‖p(·, 0)‖2 + (

n∑
j=1

‖pj− 1
2‖2

2)
1
2 ) ).

Proof. Let θn = un
h − ihu

n, ξn = ph
n − jhp

n. (5) and (8) yield

(
θn − θn−1

∆t
, v)− (div

ξn + ξn−1

2
, v)(22)

= (
un − un−1

∆t
− u

n− 1
2

t , v)− (
un

t + un−1
t

2
− u

n− 1
2

t , v), ∀v ∈ Vh,

(
ξn + ξn−1

2
,q) + (

θn + θn−1

2
, divq) = (pn− 1

2 − jhp
n− 1

2 ,q), ∀q ∈ H0
h.(23)

Putting θ̄n = θn+θn−1

2
, ξ̄n = ξn+ξn−1

2
and taking v = θ̄n, q = ξ̄n, we obtain

from the sum of (22) and (23) that

1

2∆t
(‖θn‖2 − ‖θn−1‖2) + ‖ξ̄n‖2 ≤ 1

2δ1

‖un
t + un−1

t

2
− u

n− 1
2

t ‖2 +
δ1

2
‖θ̄n‖2

+
1

2δ2

‖un − un−1

∆t
− u

n− 1
2

t ‖2 +
δ2

2
‖θ̄n‖2 +

Ch4

2
‖pn− 1

2‖2
2 +

1

2
‖ξ̄n‖2

for each 1 ≤ n ≤ N .
Applying Lemma 4.2 and letting δ > 0 such that 1 − ∆t

2
δ > 1

2
with

δ = δ1 + δ2, we have

‖θn‖2 ≤ C ( ‖θn−1‖2 + (∆t)4

∫ tn

tn−1

‖∂3u

∂t3
‖2dt + h4‖pn− 1

2‖2
2 ),
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Considering uh(·, 0) = ihg = ihu(·, 0) and adding all equations for n =
1, 2, ..., m ≤ N ,

‖θm‖2 ≤ C ( (∆t)2(

∫ tm

0

‖∂3u

∂t3
‖2dt)

1
2 + h2(

m∑
j=1

‖pj− 1
2‖2

2)
1
2 )2,

where tm = m∆t ≤ N∆t = T .

Next, we consider

(
ξn − ξn−1

∆t
,q) + (

θn − θn−1

∆t
, divq) = (

pn− 1
2 − jhp

n− 1
2

∆t
,q), ∀q ∈ H0

h(24)

instead of the second equation (23). And since

(ph
0 − jhp

0,q) + (u0
h − ihu

0, divq) = (p0 − jhp
0,q),(25)

let q = ph
0 − jhp

0, then ‖ph(·, 0)− jhp(·, 0)‖ ≤ Ch2‖p(·, 0)‖2.

From the sum of (22) with v = θn−θn−1

∆t
and (24) with q = ξ̄n, we yield

‖θn − θn−1

∆t
‖2 +

1

2∆t
(‖ξn‖2 − ‖ξn−1‖2) ≤ 1

2
‖un

t + un−1
t

2
− u

n− 1
2

t ‖2

+
1

2
‖θn − θn−1

∆t
‖2 +

1

2
‖un − un−1

∆t
− u

n− 1
2

t ‖2

+
1

2
‖θn − θn−1

∆t
‖2 +

1

∆t
(
ε−1h4

2
‖pn− 1

2‖2
2 +

ε

2
‖ξ̄n‖2).

Choosing ε > 0 such that 1− ε
2

> 0, we have

‖ξn‖2 ≤ C ( ‖ξn−1‖2 + (∆t)4

∫ tn

tn−1

‖∂3u

∂t3
‖2dt + h4‖pn− 1

2‖2
2 ),

Adding all equations for each m with 1 ≤ m ≤ N ,

‖ξm‖2 ≤ C ( (∆t)2(

∫ tm

0

‖∂3u

∂t3
‖2dt)

1
2 +h2(‖p(·, 0)‖2+(

m∑
j=1

‖pj− 1
2‖2

2)
1
2 ) )2.

This completes the proof.

We use proper postprocessing method to get global superconvergence.
For this purpose, we assume that Th has been obtained from T2h by divid-
ing each element of T2h into four congruent rectangles τ =

∑4
i=1 Ki ∈ T2h
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with Ki ∈ Th. Then we can define two postprocessing operators as fol-
lows.





J2hp ∈ Q1,1(τ)×Q1,1(τ),∫
li
(J2hp− p) · nds = 0,

i = 1, 2, ..., 8 ,





I2hu ∈ Q1(τ),∫
Ki

(I2hu− u) = 0,

i = 1, ..., 4 ,
(26)

where li(i = 1, 2, ..., 8) is sides of K1, K2, K3, K4 which are composed of
boundary of ∂τ and n is outward unit normal to li. It is easy to check
that





J2hjh = J2h,
‖J2hq‖ ≤ c‖q‖, ∀q ∈ H0

h(Ω),
‖J2hp− p‖ ≤ ch2‖p‖2 ,





I2hih = I2h,
‖I2hv‖ ≤ c‖v‖, ∀v ∈ Vh,
‖I2hu− u‖ ≤ ch2‖u‖2 .

(27)

Corollary 4.1. We have the global L2-superconvergence for Q0 −
Q1,0 ×Q0,1 element.

‖I2huh − u‖+ ‖J2hph − p‖ ≤ C [ (∆t)2(

∫ T

0

‖∂3u

∂t3
‖2dt)

1
2 + h2(‖p(·, 0)‖2

+ max
1≤j≤N

‖pj− 1
2‖2 + ‖p‖2 + ‖u‖2) ],

where N∆t = T .

5. Numerical results

In this section we examine the superconvergence phenomena. Con-
sider the parabolic problem

∂u

∂t
− div(∇u(x, t)) = f(x, t) in Ω× [0, T ),

∇u · n = 0 on ∂Ω× [0, T ),

u(·, 0) = 0 in Ω× {0}
with the exact solution u(x, y, t) = t(cos(πx)cos(πy) + 1), where Ω =
[0, 1]× [0, 1] and f(x, y, t) = 1 + cos(πx) cos(πy) + 2π2t cos(πx) cos(πy).

Let Th = {K} be a rectangular partition of Ω. To solve this problem
by the Crank-Nicolson mixed finite element method, we divide Ω into
M2 squares uniformly using (M−1) vertical lines and (M−1) horizontal
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lines and take basis functions on Q0−Q1,0×Q0,1 element. We can choose

the basis functions on reference rectangle K̂ref = [−1, 1]2 such that
{

φ̂ = 1,

ψ̂x
1 = (1−x

2
, 0), ψ̂x

2 = (1+x
2

, 0), ψ̂y
1 = (0, 1−y

2
), ψ̂y

2 = (0, 1+y
2

).

Then we let

uh =
M2∑
i=1

αiψi(x), ph =

2M(M−1)∑
j=1

βjφj(x).

Applying it into (17)∼(19), we get (M2+2M(M−1))×(M2+2M(M−1))
matrix and M2 + 2M(M − 1) load vector.

(
A B
BT D

)(
ũ
p̃

)
=

(
F
G

)

Since p̃ = −D−1BT ũ + D−1G, we first solve uh from (A−BD−1BT )ũ =
F −BD−1G by lumping technique. And then, we gain ph.

All programs were written in Matlab, and ran on PC. We use two
point Gauss quadrature to evaluate the integrals. If K is rectangle with
four vertices (x1, y1), (x2, y1), (x1, y2) and (x2, y2),

∫ ∫

K

f(x, y)dxdy ≈ h2

4

2∑
i,j=1

ωi,jf(xi, yj),

where ωi,j = 1, xi and yj (i, j = 1, 2) are two Gauss points.

Table 5.1 L2 Error Estimate for Mixed Approximate Solution
∆t = 0.1 t = 0.1 t = 1.0

M, (h = 1/M) ‖u− uh‖ ‖p− ph‖ ‖u− uh‖ ‖p− ph‖
4 0.0157389202 0.0502744069 0.1585319879 0.5102217316
8 0.0079793558 0.0251694639 0.0799553806 0.2527217829
16 0.0040033968 0.0125896729 0.0400548251 0.1260281101
32 0.0020034127 0.0062954834 0.0200367543 0.0629713514

Table 5.2 Convergence Order
∆t = 0.1 t = 0.1 t = 1.0
M1 −M2 u p u p

4− 8 0.9800 0.9981 0.9875 1.0136
8− 16 0.9950 0.9994 0.9972 1.0038
16− 32 0.9988 0.9999 0.9993 1.0010
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Applying the postprocessing technique (26) to uh and ph, we can get
the postprocessed solution I2huh and J2hph on each T2h element.

Table 5.3 L2 Error Estimate for Postprocessed Solution
∆t = 0.1 t = 0.1 t = 1.0

M, (h = 1/M) ‖u− I2huh‖ ‖p− J2hph‖ ‖u− I2huh‖ ‖p− J2hph‖
4 0.0015575989 0.0073846048 0.0261724987 0.1209839702
8 0.0003390042 0.0015352651 0.0062273735 0.0279609947
16 0.0000810741 0.0003620325 0.0015332437 0.0068303653
32 0.0000200288 0.0000891003 0.0003817688 0.0016973053

Table 5.4 Convergence Order showing Superconvergence Phenomena
∆t = 0.1 t = 0.1 t = 1.0
M1 −M2 u p u p

4− 8 2.1999 2.2660 2.0714 2.1133
8− 16 2.0640 2.0843 2.0220 2.0334
16− 32 2.0172 2.0226 2.0058 2.0087
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