SUPERCONVERGENCE OF CRANK-NICOLSON MIXED FINITE ELEMENT SOLUTION OF PARABOLIC PROBLEMS

Dae Sung Kwon and Eun-Jae Park*

Abstract

In this paper we extend the mixed finite element method and its L_{2}-error estimate for postprocessed solutions by using CrankNicolson time-discretization method.

Global $O\left(h^{2}+(\Delta t)^{2}\right)$-superconvergence for the lowest order RaviartThomas element ($Q_{0}-Q_{1,0} \times Q_{0,1}$) are obtained. Numerical examples are presented to confirm superconvergence phenomena.

1. Introduction

We show a practical discretization technique for the parabolic equations based on the mixed finite element method in a finite element space and study how we could get the global superconvergence for the mixed approximate solutions in the rectangular Raviart-Thomas elements of order 0. There are several time-discretization methods such as Backward Euler method, Crank-Nicolson method, and Runge-Kutta method [3]. We here use Crank-Nicolson method and prove optimal order of convergence. As a result, $O\left(h^{2}+(\Delta t)^{2}\right)$ - superconvergence for Raviart-Thomas element $Q_{0}-Q_{1,0} \times Q_{0,1}$ in regular mesh (not necessarily uniform) is derived.

The paper is organized as follows. The Raviart-Thomas space is introduced in §2. In §3, we devote to descretize the parabolic problem by the Crank-Nicolson mixed finite element method. In §4, we derive the main theory for superconvergence. In $\S 5$, Numerical results are given to support the theoretical results.

[^0]
2. The Raviart-Thomas Elements

Raviart and Thomas [7] introduced a family of mixed finite elements that satisfy the Ladyzhenskaya-Babuska-Brezzi condition. Their elements are defined as follows:
Let K be an ordinary rectangle or triangle and j a non-negative integer. Set

$$
\begin{equation*}
R T_{j}(K)=V(j, K) \times H(j, K), j \geq 0 \tag{1}
\end{equation*}
$$

If K is rectangle, set $V(j, K)=Q_{j, j}(K) \equiv Q_{j}(K), H(j, K)=$ $Q_{j+1, j}(K) \times Q_{j, j+1}(K)$. Then the finite element spaces $V_{h} \times H_{h}$ of index j are defined by

$$
\begin{align*}
V_{h} & =\left\{v \in L_{2}(\Omega):\left.v\right|_{K} \in V(j, K), \forall K \in \mathrm{~T}_{h}\right\} \tag{2}\\
H_{h} & =\left\{\mathbf{p} \in H(\operatorname{div} ; \Omega):\left.\mathbf{p}\right|_{K} \in H(j, K), \forall K \in \mathrm{~T}_{h}\right\},
\end{align*}
$$

where $H(\operatorname{div} ; \Omega)=\left\{\mathbf{p}=\left(p_{1}, p_{2}\right): p_{i} \in L_{2}(\Omega), i=1,2\right.$, and $\operatorname{div} \mathbf{p} \in$ $\left.L_{2}(\Omega)\right\}$ and $Q_{m, n}=\operatorname{span}\left\{x^{i} y^{j}: 0 \leq i \leq m, 0 \leq j \leq n\right\}$.

If K is triangle, set $V(j, K)=P_{j}(K), H(j, K)=P_{j}(K)^{2} \times \mathbf{x} \hat{P}_{j}(K)$, where $\hat{P}_{j}(K)$ is the set of homogeneous polynomials of degree j in the variable $\mathbf{x}=(x, y)$.

The local Raviart-Thomas projection

$$
\begin{equation*}
j_{h}: H(\operatorname{div} ; K) \rightarrow H(j, K), \forall K \in \mathcal{T}_{h} \tag{4}
\end{equation*}
$$

satisfies the following properties $[8,16,17]$:

$$
\begin{equation*}
\left(\operatorname{div}\left(\mathbf{p}-j_{h} \mathbf{p}\right), v\right)=0, \forall v \in V_{h} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \left\|j_{h} \mathbf{p}-\mathbf{p}\right\|_{0, K} \leq C h^{r}\|\mathbf{p}\|_{r, K}, 1 \leq r \leq j+1, \tag{6}\\
& \operatorname{div} j_{h}=i_{h} \operatorname{div}
\end{align*}
$$

where i_{h} is the local L_{2}-projection: $L_{2}(K) \rightarrow V(j, K)$. Furthermore, we have [8]

$$
\begin{align*}
& \left(\operatorname{div} \mathbf{q}, u-i_{h} u\right)=0, \forall \mathbf{q} \in H_{h}, \tag{8}\\
& \left\|i_{h} u-u\right\|_{0, K} \leq C h^{r}\|u\|_{r, K}, 0 \leq r \leq j+1 \tag{9}
\end{align*}
$$

We choose the lowest order rectangular Raviart-Thomas Element, $Q_{0}-Q_{1,0} \times Q_{0,1}$, which is described by
(10) $\left\{\begin{array}{l}V_{h}=\left\{v \in L_{2}(\Omega):\left.v\right|_{K} \in Q_{0}(K), \forall K \in \mathrm{~T}_{h}\right\}, \\ H_{h}^{0}=\left\{\mathbf{q} \in H_{0}(\operatorname{div} ; \Omega):\left.\mathbf{q}\right|_{K} \in Q_{1,0} \times Q_{0,1}, \forall K \in \mathrm{~T}_{h}\right\},\end{array}\right.$
where $H_{0}(\operatorname{div} ; \Omega)=\left\{\mathbf{q} \in L_{2}(\Omega)^{2}: \operatorname{divq} \in L_{2}(\Omega), \mathbf{q} \cdot \mathbf{n}=0\right.$ on $\left.\partial \Omega\right\} \subset$ $H(\operatorname{div} ; \Omega)$.
The local L_{2}-projection operator and the local Raviart-Thomas operator are defined on $Q_{0}-Q_{1,0} \times Q_{0,1}$ element by

$$
\left\{\begin{array} { l }
{ i _ { h } u \in Q _ { 0 } , } \\
{ \int _ { K } (u - i _ { h } u) = 0 , }
\end{array} \quad \left\{\begin{array}{l}
j_{h} \in Q_{1,0} \times Q_{0,1}, \\
\int_{s_{i}}\left(\mathbf{p}-j_{h} \mathbf{p}\right) \cdot \mathbf{n} d s=0, i=1,2,3,4
\end{array}\right.\right.
$$

where \mathbf{n} is the outward unit normal vector to ∂K and s_{i} is the side of each rectangle elements.

3. Crank-Nicolson Mixed Finite Element Approximation

Consider the mixed approximation for the parabolic equation with Neumann boundary condition.
(11) $\begin{aligned} & u_{t}-\operatorname{div}(a(\mathbf{x}) \nabla u(\mathbf{x}, t))+b(\mathbf{x}) u(\mathbf{x}, t)=f(\mathbf{x}, t) \text { in } \Omega \times[0, T), \\ & a(\mathbf{x}) \nabla u \cdot \mathbf{n}=0 \text { on } \partial \Omega \times[0, T), u(\cdot, 0)=g(\mathbf{x}) \text { in } \Omega \times\{0\},\end{aligned}$
where Ω is a bounded convex domain in the plane and $\partial \Omega$ is the boundary of Ω. For simplicity of presentation, we assume that $a(\mathbf{x})=1, b(\mathbf{x})=0$.

A mixed formulation for (11) is obtained by introducing a flux variable:

$$
\begin{equation*}
\mathbf{p}=\nabla u \tag{12}
\end{equation*}
$$

which is of more interest in many applications in science and engineering. The problem (11) is equivalent to seeking (u, \mathbf{p}) such that

$$
\begin{gather*}
\nabla u-\mathbf{p}=0 \text { in } \Omega \times[0, T), u_{t}-\operatorname{div} \mathbf{p}=f \text { in } \Omega \times[0, T), \tag{13}\\
\mathbf{p} \cdot \mathbf{n}=0 \text { on } \partial \Omega \times[0, T), u(\cdot, 0)=g(\cdot) \text { in } \Omega \times\{0\} .
\end{gather*}
$$

Let $V=L_{2}(\Omega)$ and $\mathcal{H}=H_{0}(\operatorname{div} ; \Omega)=\left\{\mathbf{q} \in L_{2}(\Omega)^{2}: \operatorname{divq} \in\right.$ $L_{2}(\Omega), \mathbf{q} \cdot \mathbf{n}=0$ on $\left.\partial \Omega\right\} \subset H(\operatorname{div} ; \Omega)$. Using integration by parts, we arrive at the following mixed variational form for (13):

Find $(u, \mathbf{p}) \in V \times \mathcal{H}$ such that

$$
\begin{align*}
\left(\frac{\partial u}{\partial t}, v\right)-(\operatorname{div} \mathbf{p}, v) & =(f, v), \quad \forall v \in V, \forall t \in[0, T) \tag{14}\\
(\mathbf{p}, \mathbf{q})+(u, \operatorname{divq}) & =0, \quad \forall \mathbf{q} \in \mathcal{H}, \forall t \in[0, T) \tag{15}\\
u(\cdot, 0) & =g . \tag{16}
\end{align*}
$$

Note that the Raviart-Thomas finite element space $V_{h} \times H_{h}^{0} \subset V \times \mathcal{H}$ satisfies $\operatorname{div} H_{h}^{0} \subset V_{h}$ and the Ladyzhenskaya-Babuska-Brezzi condition.

Let $\Delta t=\frac{T}{N}$ be the time step and u_{h}^{n} be the approximation of $u(t)$ at $t=t_{n}=n \Delta t$ in V_{h}. Applying the Crank-Nicolson scheme to time derivative $\frac{\partial u}{\partial t}$ around the point $t_{n-\frac{1}{2}}=\left(n-\frac{1}{2}\right) \Delta t$, we obtain the following fully discrete formulation:

For each $1 \leq n \leq N$,
(17) $\left(\frac{u_{h}^{n}-u_{h}^{n-1}}{\Delta t}, v\right)-\left(\operatorname{div}\left(\frac{\mathbf{p}_{\mathbf{h}}{ }^{n}+\mathbf{p}_{\mathbf{h}}{ }^{n-1}}{2}\right), v\right)=\left(\frac{f\left(t_{n}\right)+f\left(t_{n-1}\right)}{2}, v\right), \forall v \in V_{h}$,

$$
\begin{equation*}
\left(\frac{\mathbf{p}_{\mathbf{h}}{ }^{n}+\mathbf{p}_{\mathbf{h}}{ }^{n-1}}{2}, \mathbf{q}\right)+\left(\frac{u_{h}^{n}+u_{h}^{n-1}}{2}, \operatorname{div} \mathbf{q}\right)=0, \forall \mathbf{q} \in H_{h}^{0}, \tag{18}
\end{equation*}
$$

$\left(1 \not \dot{\chi}_{h}^{0}, v\right)=\left(i_{h} g, v\right), \forall v \in V_{h},\left(\mathbf{p}_{\mathbf{h}}{ }^{0}, \mathbf{q}\right)+\left(i_{h} g, \operatorname{divq}\right)=0, \forall \mathbf{q} \in H_{h}^{0}$.
Let $\varepsilon^{n}=u_{h}^{n}-u^{n}$ and $\eta^{n}=\mathbf{p}_{\mathrm{h}}{ }^{n}-\mathbf{p}^{n}$. Using (17)-(19), we obtain the error equations as follows.

$$
\begin{equation*}
\left(\frac{\varepsilon^{n}-\varepsilon^{n-1}}{\Delta t}, v\right)-\left(\operatorname{div}\left(\frac{\eta^{n}+\eta^{n-1}}{2}\right), v\right) \tag{20}
\end{equation*}
$$

$=\left(\frac{u^{n}-u^{n-1}}{\Delta t}-\frac{\partial u^{n-\frac{1}{2}}}{\partial t}, v\right)-\left(\frac{u_{t}^{n}+u_{t}^{n-1}}{2}-\frac{\partial u^{n-\frac{1}{2}}}{\partial t}, v\right), \forall v \in V_{h}$,
$\left((21)^{n}+\eta^{n-1} 2, \mathbf{q}\right)+\left(\frac{\varepsilon^{n}+\varepsilon^{n-1}}{2}, \operatorname{div} \mathbf{q}\right)=0, \forall \mathbf{q} \in H_{h}^{0}$ for $n=1,2, \ldots, N$.
Here, $\frac{u^{n}-u^{n-1}}{\Delta t}-\frac{\partial u^{n-\frac{1}{2}}}{\partial t}$ is the truncation error associated with the CrankNicolson method to the time derivative.

4. Global Superconvergence

In the following discussion, we assume that $\left(x_{K}, y_{K}\right)$ is the center of K and $s_{i}(i=1,2,3,4)$ is its side. s_{1} and s_{3} are parallel to y-direction and s_{2} and s_{4} are parallel to x-direction. C denotes a positive constant independent to h, not necessarily the same at each occurrence. $\|\cdot\|_{m}$ denote the norm $\|\cdot\|_{m, 2, \Omega}$, in particular, $\|\cdot\|=\|\cdot\|_{0}$.

Theorem 4.1. If $\mathbf{p} \in\left[H^{2}(\Omega)\right]^{2}$, then

$$
\left(\mathbf{p}-j_{h} \mathbf{p}, \mathbf{q}\right) \leq C h^{2}\|\mathbf{p}\|_{2}\|\mathbf{q}\| .
$$

Proof. See J.Pan [11].

Lemma 4.1. For each n, we have

$$
\begin{aligned}
& \left\|\frac{u^{n}+u^{n-1}}{2}-u^{n-\frac{1}{2}}\right\|^{2} \leq C(\Delta t)^{3} \int_{t_{n-1}}^{t_{n}}\left\|\frac{\partial^{2} u}{\partial t^{2}}\right\|^{2} d t \\
& \left\|\frac{u^{n}-u^{n-1}}{\Delta t}-u_{t}^{n-\frac{1}{2}}\right\|^{2} \leq C(\Delta t)^{3} \int_{t_{n-1}}^{t_{n}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t
\end{aligned}
$$

where C is a positive constant.
Proof. Use the Taylor theorem with the integral remainder and Hölder inequality.

Theorem 4.2. For $Q_{0-} Q_{1,0} \times Q_{0,1}$ Element, there exists a positive constant C such that

$$
\begin{aligned}
& \left\|u_{h}^{n}-i_{h} u^{n}\right\|+\left\|\mathbf{p}_{\mathbf{h}}{ }^{n}-j_{h} \mathbf{p}^{n}\right\| \\
\leq & C\left((\Delta t)^{2}\left(\int_{0}^{t_{n}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t\right)^{\frac{1}{2}}+h^{2}\left(\|\mathbf{p}(\cdot, 0)\|_{2}+\left(\sum_{j=1}^{n}\left\|\mathbf{p}^{j-\frac{1}{2}}\right\|_{2}^{2}\right)^{\frac{1}{2}}\right)\right) .
\end{aligned}
$$

Proof. Let $\theta^{n}=u_{h}^{n}-i_{h} u^{n}, \xi^{n}=\mathbf{p}_{\mathbf{h}}{ }^{n}-j_{h} \mathbf{p}^{n}$. (5) and (8) yield

$$
\begin{equation*}
\left(\frac{\theta^{n}-\theta^{n-1}}{\Delta t}, v\right)-\left(\operatorname{div} \frac{\xi^{n}+\xi^{n-1}}{2}, v\right) \tag{22}
\end{equation*}
$$

$$
=\left(\frac{u^{n}-u^{n-1}}{\Delta t}-u_{t}^{n-\frac{1}{2}}, v\right)-\left(\frac{u_{t}^{n}+u_{t}^{n-1}}{2}-u_{t}^{n-\frac{1}{2}}, v\right), \forall v \in V_{h}
$$

$$
\left(\left(\frac{\xi^{n}}{n}+\xi^{n-1}\right)^{\Delta t}, \mathbf{q}\right)+\left(\frac{\theta^{n}+\theta^{n-1}}{2}, \operatorname{div} \mathbf{q}\right)=\left(\mathbf{p}^{n-\frac{1}{2}}-j_{h} \mathbf{p}^{n-\frac{1}{2}}, \mathbf{q}\right), \forall \mathbf{q} \in H_{h}^{0}
$$

Putting $\bar{\theta}^{n}=\frac{\theta^{n}+\theta^{n-1}}{2}, \bar{\xi}^{n}=\frac{\xi^{n}+\xi^{n-1}}{2}$ and taking $v=\bar{\theta}^{n}, \mathbf{q}=\bar{\xi}^{n}$, we obtain from the sum of (22) and (23) that

$$
\begin{aligned}
& \frac{1}{2 \Delta t}\left(\left\|\theta^{n}\right\|^{2}-\left\|\theta^{n-1}\right\|^{2}\right)+\left\|\bar{\xi}^{n}\right\|^{2} \leq \frac{1}{2 \delta_{1}}\left\|\frac{u_{t}^{n}+u_{t}^{n-1}}{2}-u_{t}^{n-\frac{1}{2}}\right\|^{2}+\frac{\delta_{1}}{2}\left\|\bar{\theta}^{n}\right\|^{2} \\
& \quad+\frac{1}{2 \delta_{2}}\left\|\frac{u^{n}-u^{n-1}}{\Delta t}-u_{t}^{n-\frac{1}{2}}\right\|^{2}+\frac{\delta_{2}}{2}\left\|\bar{\theta}^{n}\right\|^{2}+\frac{C h^{4}}{2}\left\|\mathbf{p}^{n-\frac{1}{2}}\right\|_{2}^{2}+\frac{1}{2}\left\|\bar{\xi}^{n}\right\|^{2}
\end{aligned}
$$

for each $1 \leq n \leq N$.
Applying Lemma 4.2 and letting $\delta>0$ such that $1-\frac{\Delta t}{2} \delta>\frac{1}{2}$ with $\delta=\delta_{1}+\delta_{2}$, we have

$$
\left\|\theta^{n}\right\|^{2} \leq C\left(\left\|\theta^{n-1}\right\|^{2}+(\Delta t)^{4} \int_{t_{n-1}}^{t_{n}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t+h^{4}\left\|\mathbf{p}^{n-\frac{1}{2}}\right\|_{2}^{2}\right)
$$

Considering $u_{h}(\cdot, 0)=i_{h} g=i_{h} u(\cdot, 0)$ and adding all equations for $n=$ $1,2, \ldots, m \leq N$,

$$
\left\|\theta^{m}\right\|^{2} \leq C\left((\Delta t)^{2}\left(\int_{0}^{t_{m}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t\right)^{\frac{1}{2}}+h^{2}\left(\sum_{j=1}^{m}\left\|\mathbf{p}^{j-\frac{1}{2}}\right\|_{2}^{2}\right)^{\frac{1}{2}}\right)^{2}
$$

where $t_{m}=m \Delta t \leq N \Delta t=T$.
Next, we consider

$$
\left((24)-\xi^{n-1} \Delta t, \mathbf{q}\right)+\left(\frac{\theta^{n}-\theta^{n-1}}{\Delta t}, \operatorname{divq}\right)=\left(\frac{\mathbf{p}^{n-\frac{1}{2}}-j_{h} \mathbf{p}^{n-\frac{1}{2}}}{\Delta t}, \mathbf{q}\right), \forall \mathbf{q} \in H_{h}^{0}
$$

instead of the second equation (23). And since

$$
\begin{equation*}
\left(\mathbf{p}_{\mathbf{h}}{ }^{0}-j_{h} \mathbf{p}^{0}, \mathbf{q}\right)+\left(u_{h}^{0}-i_{h} u^{0}, \operatorname{div} \mathbf{q}\right)=\left(\mathbf{p}^{0}-j_{h} \mathbf{p}^{0}, \mathbf{q}\right) \tag{25}
\end{equation*}
$$

let $\mathbf{q}=\mathbf{p}_{\mathbf{h}}{ }^{0}-j_{h} \mathbf{p}^{0}$, then $\left\|\mathbf{p}_{\mathbf{h}}(\cdot, 0)-j_{h} \mathbf{p}(\cdot, 0)\right\| \leq C h^{2}\|\mathbf{p}(\cdot, 0)\|_{2}$.
From the sum of (22) with $v=\frac{\theta^{n}-\theta^{n-1}}{\Delta t}$ and (24) with $\mathbf{q}=\bar{\xi}^{n}$, we yield

$$
\begin{aligned}
& \left\|\frac{\theta^{n}-\theta^{n-1}}{\Delta t}\right\|^{2}+\frac{1}{2 \Delta t}\left(\left\|\xi^{n}\right\|^{2}-\left\|\xi^{n-1}\right\|^{2}\right) \leq \frac{1}{2}\left\|\frac{u_{t}^{n}+u_{t}^{n-1}}{2}-u_{t}^{n-\frac{1}{2}}\right\|^{2} \\
& \quad+\frac{1}{2}\left\|\frac{\theta^{n}-\theta^{n-1}}{\Delta t}\right\|^{2}+\frac{1}{2}\left\|\frac{u^{n}-u^{n-1}}{\Delta t}-u_{t}^{n-\frac{1}{2}}\right\|^{2} \\
& \quad+\frac{1}{2}\left\|\frac{\theta^{n}-\theta^{n-1}}{\Delta t}\right\|^{2}+\frac{1}{\Delta t}\left(\frac{\epsilon^{-1} h^{4}}{2}\left\|\mathbf{p}^{n-\frac{1}{2}}\right\|_{2}^{2}+\frac{\epsilon}{2}\left\|\bar{\xi}^{n}\right\|^{2}\right) .
\end{aligned}
$$

Choosing $\epsilon>0$ such that $1-\frac{\epsilon}{2}>0$, we have

$$
\left\|\xi^{n}\right\|^{2} \leq C\left(\left\|\xi^{n-1}\right\|^{2}+(\Delta t)^{4} \int_{t_{n-1}}^{t_{n}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t+h^{4}\left\|\mathbf{p}^{n-\frac{1}{2}}\right\|_{2}^{2}\right)
$$

Adding all equations for each m with $1 \leq m \leq N$,

$$
\left\|\xi^{m}\right\|^{2} \leq C\left((\Delta t)^{2}\left(\int_{0}^{t_{m}}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t\right)^{\frac{1}{2}}+h^{2}\left(\|\mathbf{p}(\cdot, 0)\|_{2}+\left(\sum_{j=1}^{m}\left\|\mathbf{p}^{j-\frac{1}{2}}\right\|_{2}^{2}\right)^{\frac{1}{2}}\right)\right)^{2}
$$

This completes the proof.

We use proper postprocessing method to get global superconvergence. For this purpose, we assume that \mathcal{T}_{h} has been obtained from $\mathcal{T}_{2 h}$ by dividing each element of $\mathcal{T}_{2 h}$ into four congruent rectangles $\tau=\sum_{i=1}^{4} K_{i} \in \mathcal{T}_{2 h}$
with $K_{i} \in \mathcal{T}_{h}$. Then we can define two postprocessing operators as follows.

$$
\left\{\begin{array} { l }
{ J _ { 2 h } \mathbf { p } \in Q _ { 1 , 1 } (\tau) \times Q _ { 1 , 1 } (\tau) , } \tag{26}\\
{ \int _ { l _ { i } } (J _ { 2 h } \mathbf { p } - \mathbf { p }) \cdot \mathbf { n } d s = 0 , } \\
{ i = 1 , 2 , \ldots , 8 , }
\end{array} \quad \left\{\begin{array}{l}
I_{2 h} u \in Q_{1}(\tau), \\
\int_{K_{i}}\left(I_{2 h} u-u\right)=0 \\
i=1, \ldots, 4,
\end{array}\right.\right.
$$

where $l_{i}(i=1,2, \ldots, 8)$ is sides of $K_{1}, K_{2}, K_{3}, K_{4}$ which are composed of boundary of $\partial \tau$ and \mathbf{n} is outward unit normal to l_{i}. It is easy to check that

$$
\left(2 7 \left\{\begin{array}{l}
J_{2 h} j_{h}=J_{2 h}, \\
\left\|J_{2 h} \mathbf{q}\right\| \leq c\|\mathbf{q}\|, \forall \mathbf{q} \in H_{h}^{0}(\Omega), \\
\left\|J_{2 h} \mathbf{p}-\mathbf{p}\right\| \leq c h^{2}\|\mathbf{p}\|_{2},
\end{array},\left\{\begin{array}{l}
I_{2 h} i_{h}=I_{2 h}, \\
\left\|I_{2 h} v\right\| \leq c\|v\|, \forall v \in V_{h}, \\
\left\|I_{2 h} u-u\right\| \leq c h^{2}\|u\|_{2} .
\end{array}\right.\right.\right.
$$

Corollary 4.1. We have the global L_{2}-superconvergence for $Q_{0}-$ $Q_{1,0} \times Q_{0,1}$ element.

$$
\begin{aligned}
& \left\|I_{2 h} u_{h}-u\right\|+\left\|J_{2 h} \mathbf{p}_{\mathbf{h}}-\mathbf{p}\right\| \leq C\left[(\Delta t)^{2}\left(\int_{0}^{T}\left\|\frac{\partial^{3} u}{\partial t^{3}}\right\|^{2} d t\right)^{\frac{1}{2}}+h^{2}\left(\|\mathbf{p}(\cdot, 0)\|_{2}\right.\right. \\
& \left.\left.\quad+\max _{1 \leq j \leq N}\left\|\mathbf{p}^{j-\frac{1}{2}}\right\|_{2}+\|\mathbf{p}\|_{2}+\|u\|_{2}\right)\right]
\end{aligned}
$$

where $N \Delta t=T$.

5. Numerical results

In this section we examine the superconvergence phenomena. Consider the parabolic problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\operatorname{div}(\nabla u(\mathbf{x}, t)) & =f(\mathbf{x}, t) \text { in } \Omega \times[0, T), \\
\nabla u \cdot \mathbf{n} & =0 \text { on } \partial \Omega \times[0, T), \\
u(\cdot, 0) & =0 \text { in } \Omega \times\{0\}
\end{aligned}
$$

with the exact solution $u(x, y, t)=t(\cos (\pi x) \cos (\pi y)+1)$, where $\Omega=$ $[0,1] \times[0,1]$ and $f(x, y, t)=1+\cos (\pi x) \cos (\pi y)+2 \pi^{2} t \cos (\pi x) \cos (\pi y)$.

Let $\mathcal{T}_{h}=\{K\}$ be a rectangular partition of Ω. To solve this problem by the Crank-Nicolson mixed finite element method, we divide Ω into M^{2} squares uniformly using ($M-1$) vertical lines and ($M-1$) horizontal
lines and take basis functions on $Q_{0}-Q_{1,0} \times Q_{0,1}$ element. We can choose the basis functions on reference rectangle $\hat{K}_{\text {ref }}=[-1,1]^{2}$ such that

$$
\left\{\begin{array}{l}
\hat{\phi}=1 \\
\hat{\psi}_{1}^{x}=\left(\frac{1-x}{2}, 0\right), \hat{\psi}_{2}^{x}=\left(\frac{1+x}{2}, 0\right), \hat{\psi}_{1}^{y}=\left(0, \frac{1-y}{2}\right), \hat{\psi}_{2}^{y}=\left(0, \frac{1+y}{2}\right) .
\end{array}\right.
$$

Then we let

$$
u_{h}=\sum_{i=1}^{M^{2}} \alpha_{i} \psi_{i}(x), \mathbf{p}_{\mathbf{h}}=\sum_{j=1}^{2 M(M-1)} \beta_{j} \phi_{j}(x) .
$$

Applying it into (17) $\sim(19)$, we get $\left(M^{2}+2 M(M-1)\right) \times\left(M^{2}+2 M(M-1)\right)$ matrix and $M^{2}+2 M(M-1)$ load vector.

$$
\left(\begin{array}{cc}
A & B \\
B^{T} & D
\end{array}\right)\binom{\tilde{u}}{\tilde{p}}=\binom{F}{G}
$$

Since $\tilde{p}=-D^{-1} B^{T} \tilde{u}+D^{-1} G$, we first solve u_{h} from $\left(A-B D^{-1} B^{T}\right) \tilde{u}=$ $F-B D^{-1} G$ by lumping technique. And then, we gain $\mathbf{p}_{\mathbf{h}}$.

All programs were written in Matlab, and ran on PC. We use two point Gauss quadrature to evaluate the integrals. If K is rectangle with four vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right),\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)$,

$$
\iint_{K} f(x, y) d x d y \approx \frac{h^{2}}{4} \sum_{i, j=1}^{2} \omega_{i, j} f\left(x_{i}, y_{j}\right)
$$

where $\omega_{i, j}=1, x_{i}$ and $y_{j}(i, j=1,2)$ are two Gauss points.
Table 5.1 L_{2} Error Estimate for Mixed Approximate Solution

$\Delta t=0.1$	$t=0.1$		$t=1.0$									
$M,(h=1 / M)$	$\left\\|u-u_{h}\right\\|$	$\left\\|\mathbf{p}-\mathbf{p}_{\mathbf{h}}\right\\|$	$\left\\|u-u_{h}\right\\|$	$\left\\|\mathbf{p}-\mathbf{p}_{\mathbf{h}}\right\\|$								
4	0.0157389202	0.0502744069	0.1585319879	0.5102217316								
8	0.0079793558	0.0251694639	0.0799553806	0.2527217829								
16	0.0040033968	0.0125896729	0.0400548251	0.1260281101								
32	0.0020034127	0.0062954834	0.0200367543	0.0629713514								

Table 5.2 Convergence Order

$\Delta t=0.1$	$t=0.1$		$t=1.0$	
$M_{1}-M_{2}$	u	\mathbf{p}	u	\mathbf{p}
$4-8$	0.9800	0.9981	0.9875	1.0136
$8-16$	0.9950	0.9994	0.9972	1.0038
$16-32$	0.9988	0.9999	0.9993	1.0010

Applying the postprocessing technique (26) to u_{h} and $\mathbf{p}_{\mathbf{h}}$, we can get the postprocessed solution $I_{2 h} u_{h}$ and $J_{2 h} \mathbf{p}_{\mathbf{h}}$ on each $\mathcal{T}_{2 h}$ element.

Table 5.3 L_{2} Error Estimate for Postprocessed Solution

$\Delta t=0.1$	$t=0.1$		$t=1.0$									
$M,(h=1 / M)$	$\left\\|u-I_{2 h} u_{h}\right\\|$	$\left\\|\mathbf{p}-J_{2 h} \mathbf{p}_{\mathbf{h}}\right\\|$	$\left\\|u-I_{2 h} u_{h}\right\\|$	$\left\\|\mathbf{p}-J_{2 h} \mathbf{p}_{\mathbf{h}}\right\\|$								
4	0.0015575989	0.0073846048	0.0261724987	0.1209839702								
8	0.0003390042	0.0015352651	0.0062273735	0.0279609947								
16	0.0000810741	0.0003620325	0.0015332437	0.0068303653								
32	0.0000200288	0.0000891003	0.0003817688	0.0016973053								

Table 5.4 Convergence Order showing Superconvergence Phenomena

$\Delta t=0.1$	$t=0.1$		$t=1.0$	
$M_{1}-M_{2}$	u	\mathbf{p}	u	\mathbf{p}
$4-8$	2.1999	2.2660	2.0714	2.1133
$8-16$	2.0640	2.0843	2.0220	2.0334
$16-32$	2.0172	2.0226	2.0058	2.0087

References

[1] M. B. Allen and E. L. Isaacson, Numerical Analysis for Applied Science, Wiley Series in Pure and Applied Mathematics, New York, 1998.
[2] L.C.Evans, Partial Differential Equations, Berkeley Mathematics Lecture Notes, 1993.
[3] C.Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University Press, 1987.
[4] D.Braess, Finite Elements, Translated by Larry L. Schumaker, Cambridge University Press, 2001.
[5] R.G.Duran, Galerkin approximations and finite element method, Lecture notes at I.C.T.P, September 5, 1996.
[6] J.Wang, Mixed finite element methods, Preprint.
[7] P.-A.Raviart and J.-M.Thomas, a mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math., Vol.606, Springer-Verlag, Berlin and New York, 1977.
[8] J.Douglas and J.E.Roberts, Global estimates for mixed methods for second order elliptic equations, Mathematics of Computation, Vol.44, 1985.
[9] C.Johnson and V.Thomée, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O., Anal. Numér.,1981.
[10] F.A.Milner and E.-J.Park, A mixed finite element method for a strongly nonlinear second-order elliptic problem, Math. Comp.,1995.
[11] J.Pan, Global Superconvergence for the Parabolic Problem in Rectangular Mixed Finite Element Method, Beijing Mathmatics Vol.1, Part 2, 1995.
[12] E.-J.Park, Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal., 1995.
[13] M.C.SqUEFF, Superconvergence of mixed finite elements for parabolic equations, $\mathrm{M}^{2} \mathrm{AN}, 1987$.
[14] M.Křížek, P.Neittaanmäki and R.Stenberg, Finite Element Method, Lecture notes in pure and applied mathematics, Marcel Dekker, Inc., 1998.
[15] G.Dhatt and G.Touzot, The Finite Element Method Displayed, A WileyInterscience Publication, 1984.
[16] R. Duran, Superconvergence for rectangular mixed finite elements Numer. Math., Vol.58, 1990.
[17] M. Fortin, An analysis of the convergence of mixed finite element method RATRO, Anal. Numer., Vol.11, 1977.

Department of Mathematics
Yonsei University
Seoul 120-749, Korea
E-mail: ejpark@yonsei.ac.kr

[^0]: Received June 12, 2005.
 2000 Mathematics Subject Classification: 65M15, 65M60, 65N15, 65N30.
 Key words and phrases: mixed finite element method, superconvergence, parabolic problem, Raviart-Thomas element, postprocessing method.
 *Corresponding author.

