GENERATOR POLYNOMIALS OF THE p-ADIC QUADRATIC RESIDUE CODES

Sung Jin Kim

Abstract

Using the Newton's identities, we give the inductive formula for the generator polynomials of the p-adic quadratic residue codes.

1. Introduction

Let p be a prime. We use the symbol $\mathbb{Z}_{p^{a}}$ to denote the ring $\mathbb{Z} / p^{a} \mathbb{Z}$ of integers modulo p^{a} for any positive integer a, and $\mathbb{Z}_{p^{\infty}}$ for the ring of p-adic integers. An element $u \in \mathbb{Z}_{p^{a}}$ may be written uniquely as a finite sum

$$
u=u_{0}+p u_{1}+p^{2} u_{2}+\cdots+p^{a-1} u_{a-1}
$$

and any element of $\mathbb{Z}_{p^{\infty}}$ as an infinite sum

$$
u=u_{0}+p u_{1}+p^{2} u_{2}+\cdots,
$$

where $0 \leq u_{i} \leq p-1$. The units in $\mathbb{Z}_{p^{a}}$ or $\mathbb{Z}_{p^{\infty}}$ are precisely those u for which $u_{0} \neq 0$. $\mathbb{Z}_{p^{a}}$ has characteristic p^{a}, and $\mathbb{Z}_{p^{\infty}}$ has characteristic 0 . The finite field of $q=p^{a}$ elements will be denoted by \mathbb{F}_{q}.

For a positive integer m, the Galois extension of \mathbb{Z}_{q} of degree m is denoted by $G R(q, m)$. It is called a Galois ring and it can be realized as

$$
G R(q, m)=\mathbb{Z}_{q}[X] /\langle h(X)\rangle
$$

for any monic polynomial of degree m in $\mathbb{Z}[X]$, which is irreducible over \mathbb{Z}_{p}. We may choose $h(X)$ so that its root ζ is a $\left(p^{m}-1\right)$ th root of unity, and $G R(q, m)=\mathbb{Z}_{q}[\zeta]$. See $[2,6]$ for details. Thus any element $s \in G R(q, m)$ can be written as

$$
s=b_{0}+b_{1} \zeta+b_{2} \zeta^{2}+\cdots+b_{m-1} \zeta^{m-1}, \quad b_{i} \in \mathbb{Z}_{q} .
$$

Received January 9, 2005.
2000 Mathematics Subject Classification: 94B15.
Key words and phrases: quadratic residue codes, p-adic codes.

The map $\mathcal{F} r: G R(q, m) \rightarrow G R(q, m)$ defined by

$$
\mathcal{F} r\left(b_{0}+b_{1} \zeta+\cdots+b_{m-1} \zeta^{m-1}\right)=b_{0}+b_{1} \zeta^{p}+\cdots+b_{m-1} \zeta^{p(m-1)}
$$

is called the Frobenius map. It is the generator of the Galois group of $G R(q, m)$ over \mathbb{Z}_{q}. In particular, the elements of $G R(q, m)$ fixed under $\mathcal{F} r$ is \mathbb{Z}_{q}.

2. Quadratic residue codes over $\mathbb{Z}_{p^{a}}$

Let $n \neq 2,3$ be a prime. Let $Q \subset \mathbb{Z}_{n}$ denote the set of nonzero quadratic residues modulo n and N denote the set of nonresidues modulo n.

Let $p<n$ be another prime which is a quadratic residue $\bmod n$. Let $q=p^{a}$, where a is a positive integer. Let m be the order of p modulo n. Then $n \mid p^{m}-1$ and hence the Galois ring $G R(q, m)$ contains a primitive nth root of unity $\alpha=\zeta^{\left(p^{m}-1\right) / n}$.

Let

$$
\begin{equation*}
Q_{q}(X)=\prod_{i \in Q}\left(X-\alpha^{i}\right), \quad N_{q}(X)=\prod_{j \in N}\left(X-\alpha^{j}\right) . \tag{1}
\end{equation*}
$$

Then the degrees of $Q_{q}(x)$ and $N_{q}(x)$ are both $\frac{n-1}{2}$, and

$$
X^{n}-1=\prod_{i=0}^{n-1}\left(X-\alpha^{i}\right)=(X-1) Q_{q}(X) N_{q}(X)
$$

Since $p Q=Q$, we have that

$$
\mathcal{F} r Q_{q}(X)=\prod_{i \in Q}\left(X-\alpha^{i p}\right)=\prod_{i \in p Q}\left(X-\alpha^{i}\right)=Q_{q}(X),
$$

and similarly $p N=N$ implies that $\mathcal{F} r N_{q}(X)=N_{q}(X)$. Thus $Q_{q}(X)$ and $N_{q}(X)$ have coefficients from \mathbb{Z}_{q}. Furthermore,

$$
Q_{p^{b}}(X) \equiv Q_{p^{a}}(X) \quad\left(\bmod p^{a}\right)
$$

for all $a \leq b<\infty$. We define $Q_{p^{\infty}}$ to be the p-adic limits of $Q_{p^{a}}$. In particular,

$$
\begin{equation*}
Q_{p^{a}}(X) \equiv Q_{p^{\infty}}(X) \quad\left(\bmod p^{a}\right) \tag{2}
\end{equation*}
$$

The similar results hold for $N_{q}(X)$.

Definition 2.1. The cyclic codes of $\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$ with generator polynomials $Q_{q}(X),(X-1) Q_{q}(X), N_{q}(X)$ and $(X-1) N_{q}(X)$, respectively, are called the quadratic residue codes over \mathbb{Z}_{q} and denoted by \mathcal{Q}_{q}, $\overline{\mathcal{Q}}_{q}, \mathcal{N}_{q}$ and $\overline{\mathcal{N}}_{q}$, respectively. When $q=p^{\infty}$, then they are called the p-adic quadratic residue codes.

The reciprocal polynomial of a polynomial $h(X)=a_{0}+a_{1} X+\cdots+$ $a_{k} X^{k}$ of degree k is the polynomial

$$
\bar{h}(X)=a_{k}+a_{k-1} X+\cdots+a_{0} X^{k}=h\left(X^{-1}\right) X^{k}
$$

If $\bar{h}(X)=h(X)$, it is called a self reciprocal polynomial.
Theorem 2.2. Let $Q_{q}(X)$ and $N_{q}(X)$ be as in (1).
(i) If $n=4 k-1$, then $N_{q}(X)$ is the reciprocal polynomial to $-Q_{q}(X)$.
(ii) If $n=4 k+1$, then $Q_{q}(X)$ and $N_{q}(X)$ are self reciprocal polynomial.

Proof. Let $\mathbb{Z}_{n}{ }^{*}=\{1,2,3, \cdots n-1\}$. First note that

$$
\sum_{i \in \mathbb{Z}_{n}^{*}} i=1+2+\cdots+(n-1)=n \cdot \frac{(n-1)}{2} \equiv 0 \quad(\bmod n)
$$

On the other hand, for any $b \in N$ we have that $b Q=N$ and hence

$$
\sum_{i \in \mathbb{Z}_{n}^{*}} i=\sum_{i \in Q} i+\sum_{j \in N} j=\sum_{i \in Q} i+\sum_{i \in Q} b i=(1+k) \sum_{i \in Q} i .
$$

Taking $k \neq-1$, we obtain that

$$
\begin{equation*}
\sum_{i \in Q} i=0 . \tag{3}
\end{equation*}
$$

Furthermore, recall that $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$. Hence -1 is a quadratic residue modulo n iff $n \equiv 1(\bmod 4)$.
(i) We have $|Q|=|N|=2 k-1$. Also -1 is a nonresidue and hence $N=-Q$. We will show that $N_{q}(X)=-Q_{q}\left(X^{-1}\right) \cdot X^{2 k-1}$. Indeed,

$$
\begin{aligned}
-Q_{q}\left(X^{-1}\right) \cdot X^{2 k-1} & =-\left(\prod_{i \in Q}\left(X^{-1}-\alpha^{i}\right)\right) \cdot X^{2 k-1}=-\prod_{i \in Q}\left(X^{-1}-\alpha^{i}\right) X \\
& =\prod_{i \in Q}\left(\alpha^{i} X-1\right)=\prod_{i \in Q} \alpha^{i} \cdot \prod_{i \in Q}\left(X-\alpha^{-i}\right) \\
& =\alpha^{0} \cdot \prod_{i \in Q}\left(X-\alpha^{-i}\right)=\prod_{j \in N}\left(X-\alpha^{j}\right)=N_{q}(X) .
\end{aligned}
$$

Hence, $N_{q}(X)$ is the reciprocal polynomial to $-Q_{q}(X)$.
(ii) In this case we have that $|Q|=|N|=2 k$ and $Q=-Q, N=-N$. We have that

$$
\begin{aligned}
Q_{q}\left(X^{-1}\right) \cdot X^{2 k} & =\left(\prod_{i \in Q}\left(X^{-1}-\alpha^{i}\right)\right) \cdot X^{2 k}=\prod_{i \in Q}\left(X^{-1}-\alpha^{i}\right) X \\
& =\prod_{i \in Q}\left(1-\alpha^{i} X\right)=\prod_{i \in Q}\left(\alpha^{i} X-1\right)=\prod_{i \in Q} \alpha^{i}\left(X-\alpha^{-i}\right) \\
& =\prod_{i \in Q} \alpha^{i} \cdot \prod_{i \in Q}\left(X-\alpha^{-i}\right)=\alpha^{0} \cdot \prod_{i \in Q}\left(X-\alpha^{-i}\right)=\prod_{i \in Q}\left(X-\alpha^{i}\right) \\
& =Q_{q}(X) .
\end{aligned}
$$

Similarly, we can show that $N_{q}(X)=N_{q}\left(X^{-1}\right) \cdot X^{2 k}$. Hence $Q_{q}(X)$ and $N_{q}(X)$ are self reciprocal polynomials.

3. Generator polynomials of quadratic residue codes

As in the previous section, let $n \neq 2,3$ be a prime, $Q \subset \mathbb{Z}_{n}$ denote the set of nonzero quadratic residues modulo n and N the set of nonresidues modulo n. Let

$$
f_{Q}(X)=\sum_{i \in Q} X^{i}, \quad f_{N}(X)=\sum_{i \in N} X^{i} .
$$

Theorem 3.1. Let $R=\mathbb{Z}_{q}[X] /\left(X^{n}-1\right)$.
(i) Suppose $n=4 k-1$. In R, we have

$$
\begin{aligned}
f_{Q}^{2} & =\frac{(n-3)}{4} f_{Q}+\frac{(n+1)}{4} f_{N}, \\
f_{N}^{2} & =\frac{(n+1)}{4} f_{Q}+\frac{(n-3)}{4} f_{N}, \\
f_{Q} \cdot f_{N} & =\frac{(n-1)}{2}+\frac{(n-3)}{4} f_{Q}+\frac{(n-3)}{4} f_{N} .
\end{aligned}
$$

(ii) Suppose $n=4 k+1$. In R, we have

$$
\begin{aligned}
f_{Q}^{2} & =\frac{(n-5)}{4} f_{Q}+\frac{(n-1)}{4} f_{N}+\frac{(n-1)}{2}, \\
f_{N}^{2} & =\frac{(n-1)}{4} f_{Q}+\frac{(n-5)}{4} f_{N}+\frac{(n-1)}{2}, \\
f_{Q} \cdot f_{N} & =\frac{(n-1)}{4} f_{Q}+\frac{(n-1)}{4} f_{N} .
\end{aligned}
$$

Proof. These follows from Perron's Theorem (p. 519 in [7]).
The elementary symmetric polynomials $s_{0}, s_{1}, s_{2}, \cdots, s_{t}$ in $S\left[X_{1}, X_{2}, \cdots, X_{t}\right]$ over a ring S are

$$
s_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{t}} X_{i_{1}} X_{i_{2}} \cdots X_{i_{t}}, \quad \text { for } i=1,2, \cdots, t
$$

We define $s_{0}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=1$. It is clear that

$$
\begin{equation*}
\left(X-a_{1}\right) \cdots\left(X-a_{t}\right)=X^{t}-s_{1}(a) X^{t-1}+\cdots \pm s_{t}(a)=\sum_{i=0}^{t}(-1)^{i} s_{i}(a) X^{t-i} \tag{4}
\end{equation*}
$$

where $s_{i}(a)=s_{i}\left(a_{1}, a_{2}, \cdots, a_{t}\right)$.
For all $i \geq 1$, the i-power symmetric polynomials are defined by

$$
p_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)=X_{1}^{i}+X_{2}^{i}+\cdots+X_{t}^{i}
$$

The following Newton's identities are well-known [4].
Theorem 3.2 (Newton's identities). For each $i \geq 1$,

$$
\begin{equation*}
p_{i}=p_{i-1} s_{1}-p_{i-1} s_{2}+\cdots+(-1)^{i} p_{1} s_{i-1}+(-1)^{i+1} i s_{i} \tag{5}
\end{equation*}
$$

where $s_{i}=s_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ and $p_{i}=p_{i}\left(X_{1}, X_{2}, \cdots, X_{t}\right)$.
Let $Q=\left\{q_{1}, q_{2}, \cdots q_{t}\right\}, N=\left\{n_{1}, n_{2}, \cdots, n_{t}\right\}$.
Theorem 3.3. Let $\lambda=-f_{Q}(\alpha)$ and $\mu=-f_{N}(\alpha)$. Then
(i) $\lambda+\mu=1$.
(ii) If $n=4 k-1$, then λ and μ satisfy $x^{2}-x+k=0$.
(iii) If $n=4 k+1$, then λ and μ satisfy $x^{2}-x-k=0$.

Proof. (i) We have that

$$
0=\alpha^{n-1}+\alpha^{n-2}+\cdots+\alpha+1=f_{Q}(\alpha)+f_{N}(\alpha)+1
$$

Thus $\lambda+\mu=1$.
(ii) By Theorem 3.1(i) we have that

$$
\begin{aligned}
\lambda^{2}-\lambda & =f_{Q}(\alpha)^{2}+f_{Q}(\alpha)=\frac{4 k-4}{4} f_{Q}(\alpha)+\frac{4 k}{4} f_{N}(\alpha)+f_{Q}(\alpha) \\
& =k\left(f_{Q}(\alpha)+f_{N}(\alpha)\right)=k(-1)=-k .
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
\mu^{2}-\mu & =f_{N}(\alpha)^{2}+f_{N}(\alpha)=\frac{4 k}{4} f_{Q}(\alpha)+\frac{4 k-4}{4} f_{N}(\alpha)+f_{N}(\alpha) \\
& =k\left(f_{Q}(\alpha)+f_{N}(\alpha)\right)=k(-1)=-k .
\end{aligned}
$$

(iii) It can be proved in a similar manner.

Let

$$
\begin{array}{ll}
s_{i}\left(\alpha^{Q}\right)=s_{i}\left(\alpha^{q_{1}}, \alpha^{q_{2}}, \cdots, \alpha^{q_{t}}\right), & s_{i}\left(\alpha^{N}\right)=s_{i}\left(\alpha^{n_{1}}, \alpha^{n_{2}}, \cdots, \alpha^{n_{t}}\right), \\
p_{i}\left(\alpha^{Q}\right)=p_{i}\left(\alpha^{q_{1}}, \alpha^{q_{2}}, \cdots, \alpha^{q_{t}}\right), & p_{i}\left(\alpha^{N}\right)=p_{i}\left(\alpha^{n_{1}}, \alpha^{n_{2}}, \cdots, \alpha^{n_{t}}\right) .
\end{array}
$$

Theorem 3.4. Let $Q_{p \infty}(X)=a_{0} X^{t}+a_{1} X^{t-1}+\cdots+a_{t}$. Then $a_{0}=1$, $a_{1}=\lambda$ and the other coefficients $a_{i} \in \mathbb{Z}_{p \infty}$ can be determined inductively by the formula

$$
a_{i}=-\frac{p_{i} a_{0}+p_{i-1} a_{1}+p_{i-2} a_{2}+\cdots+p_{1} a_{i-1}}{i},
$$

where $a_{i}=s_{i}\left(\alpha^{Q}\right)$ and $p_{i}=p_{i}\left(\alpha^{Q}\right)$. Moreover each a_{i} is linear in λ, i.e. has the form $\alpha_{i} \lambda+\beta_{i}$. Analogous statements hold for $N_{p^{\infty}}(X)=$ $b_{0} X^{t}+b_{1} X^{t-1}+\cdots+b_{t}$ with $b_{0}=1, b_{1}=\mu$. In particular, $N_{2 \infty}(X)$ can be obtained by replacing λ in $Q_{p^{\infty}}(X)$ by $\mu=1-\lambda$.

Proof. The formula for a_{i} follows from the Newton's identities (5) and the fact that $a_{i}=(-1)^{i} s_{i}$. We will use the induction to prove that each a_{i} is linear in $\lambda . a_{1}=\lambda$ has the right form. Suppose a_{j} all are linear in λ. Then $s_{j}=(-1)^{j} a_{j}$ is linear in λ. Note that each p_{i-j} is linear in λ by Lemma 4.1. Since λ^{2} is linear in λ by Theorem 3.3, each $p_{i-j} s_{j}$ is linear, and thus it is now clear from the formula that a_{i} is linear in λ.

4. Examples

Proposition 4.1. (i) $p_{i}\left(\alpha^{Q}\right)= \begin{cases}-\lambda, & i \in Q, \\ \lambda-1, & i \in N .\end{cases}$
(ii) $p_{i}\left(\alpha^{N}\right)= \begin{cases}-\mu, & i \in Q, \\ \mu-1, & i \in N .\end{cases}$

Proof. (i) If $i \in Q$, then $p_{i}\left(\alpha^{Q}\right)=f_{Q}(\alpha)=-\lambda$. If $i \in N$, then $p_{i}\left(\alpha^{Q}\right)=f_{N}(\alpha)=\lambda-1$.
(ii) If $i \in Q$, then $p_{i}\left(\alpha^{N}\right)=f_{N}(\alpha)=-\mu$. If $i \in N$, then $p_{i}\left(\alpha^{N}\right)=$ $f_{Q}(\alpha)=1-\mu$.

Example 4.2. We consider the case $n=7, p=2$. Then $k=2$ so that $7=4 k-1$, and λ is a 2 -adic number satisfying

$$
\lambda^{2}-\lambda+k=\lambda^{2}-\lambda+2=0
$$

Its 2-adic expansion is chosen to be
$\lambda=0+2^{1}+2^{2}+2^{5}+2^{7}+2^{8}+2^{9}+2^{10}+2^{11}+2^{12}+2^{15}+2^{16}+2^{17}+\cdots$. We have $Q=\{1,4,2\}$ and $N=\{3,5,6\}$. Thus $p_{1}=p_{2}=p_{4}=-\lambda$, and $p_{3}=p_{5}=p_{6}=\lambda-1$. Write

$$
Q_{2 \infty}(X)=X^{3}+a_{1} X^{2}+a_{2} X+a_{3} .
$$

Then $a_{1}=\lambda$ and

$$
\begin{aligned}
& a_{2}=-\frac{p_{2} a_{0}+p_{1} a_{1}}{2}=-\frac{-\lambda-\lambda^{2}}{2}=\frac{\lambda+\lambda^{2}}{2}=\lambda-1 \\
& a_{3}=-\frac{p_{3} a_{0}+p_{2} a_{1}+p_{1} a_{2}}{3}=-\frac{\lambda-1-\lambda^{2}-\lambda^{2}+\lambda}{3}=-1
\end{aligned}
$$

and hence

$$
Q_{2^{\infty}}(X)=X^{3}+\lambda X^{2}+(\lambda-1) X-1 .
$$

The polynomial $Q_{2 \infty}(X)$ is a generator for the 2-adic Hamming code of length 7. By Theorem 2.2 or Theorem 3.4,

$$
N_{2^{\infty}}(X)=-\bar{Q}_{2^{\infty}}(X)=X^{3}-(\lambda-1) X^{2}-\lambda X-1,
$$

and

$$
X^{7}-1=(X-1) Q_{2^{\infty}}(X) N_{2^{\infty}}(X)
$$

Example 4.3. We next consider the case $n=23, p=2$. Then $k=6$ so that $23=4 k-1$, and λ is a 2 -adic number satisfying

$$
\lambda^{2}-\lambda+6=0
$$

Its 2 -adic expansion is chosen to be

$$
\lambda=0+2^{1}+2^{3}+2^{5}+2^{6}+2^{7}+2^{8}+2^{11}+2^{14}+2^{16}+2^{17}+\cdots .
$$

We have $Q=\{1,2,3,4,6,8,9,12,13,16,18\}$ and recall that $p_{i}=-\lambda$ for $i \in Q$ and $p_{i}=\lambda-1$ for $i \in N$. Write

$$
\begin{aligned}
Q_{2 \infty}(X)= & X^{11}+a_{1} X^{10}+a_{2} X^{9}+a_{3} X^{8}+a_{4} X^{7}+a_{5} X^{6} \\
& +a_{6} X^{5}+a_{7} X^{4}+a_{8} X^{3}+a_{9} X^{2}+a_{10} X+a_{11}
\end{aligned}
$$

Then $a_{1}=\lambda$ and

$$
\begin{aligned}
a_{2} & =-\frac{p_{2} a_{0}+p_{1} a_{1}}{2}=-\frac{-\lambda-\lambda^{2}}{2}=\frac{\lambda+\lambda^{2}}{2}=\lambda-3 \\
a_{3} & =-\frac{p_{3} a_{0}+p_{2} a_{1}+p_{1} a_{2}}{3}=-\frac{-\lambda+(-\lambda) \lambda+(-\lambda)(\lambda-3)}{3}=-4 \\
a_{4} & =-\frac{p_{4} a_{0}+p_{3} a_{1}+p_{2} a_{2}+p_{1} a_{3}}{4} \\
& =-\frac{-\lambda+(-\lambda) \lambda+(-\lambda)(\lambda-3)+(-\lambda)(-4)}{4}=-\lambda-3
\end{aligned}
$$

and

$$
\begin{array}{r}
Q_{2^{\infty}}(X)=X^{11}+\lambda X^{10}+(\lambda-3) X^{9}-4 X^{8}-(\lambda+3) X^{7}-(2 \lambda+1) X^{6} \\
-(2 \lambda-3) X^{5}-(\lambda-4) X^{4}+4 X^{3}+(\lambda+2) X^{2}+(\lambda-1) X-1 .
\end{array}
$$

The polynomial $Q_{2 \infty}(X)$ is a generator for the 2-adic Golay code of length 23. By Theorem 2.2,

$$
\begin{aligned}
& N_{2 \infty}(X)=-\bar{Q}_{2 \infty}(X)=X^{11}-(\lambda-1) X^{10}-(\lambda+2) X^{9}-4 X^{8}+(\lambda-4) X^{7} \\
& \quad+(2 \lambda-3) X^{6}+(2 \lambda+1) X^{5}+(\lambda+3) X^{4}+4 X^{3}-(\lambda-3) X^{2}-\lambda X-1,
\end{aligned}
$$

and

$$
X^{23}-1=(X-1) Q_{2^{\infty}}(X) N_{2^{\infty}}(X) .
$$

Example 4.4. Case $n=11, p=3$. Then $k=3$ so that $11=4 k-1$, and λ is a 3 -adic number satisfying

$$
\lambda^{2}-\lambda+3=0 .
$$

Its 3 -adic expansion is chosen to be
$\lambda=0+3^{1}+3^{2}+2 \cdot 3^{3}+2 \cdot 3^{4}+2 \cdot 3^{6}+3^{8}+2 \cdot 3^{9}+2 \cdot 3^{11}+2 \cdot 3^{13}+3^{14}+2 \cdot 3^{15}+\cdots$. We have $Q=\{1,3,4,5,9\}$ and $N=\{2,6,7,8,10\}$. Thus $p_{1}=p_{3}=p_{4}=$ $p_{5}=-\lambda$, and $p_{2}=\lambda-1$. Write

$$
Q_{3^{\infty}}(X)=X^{5}+a_{1} X^{4}+a_{2} X^{3}+a_{3} X^{2}+a_{4} X+a_{5} .
$$

$$
\begin{aligned}
a_{1} & =\lambda \\
a_{2} & =-\frac{p_{2} a_{0}+p_{1} a_{1}}{2}=-\frac{(\lambda-1)+(-\lambda) \lambda}{2}=-1 \\
a_{3} & =-\frac{p_{3} a_{0}+p_{2} a_{1}+p_{1} a_{2}}{3}=-\frac{-\lambda+(\lambda-1) \lambda+(-\lambda)(-1)}{3}=1 \\
a_{4} & =-\frac{p_{4} a_{0}+p_{3} a_{1}+p_{2} a_{2}+p_{1} a_{3}}{4} \\
& =-\frac{-\lambda+(-\lambda) \lambda+(\lambda-1)(-1)+(-\lambda)}{4}=\lambda-1 \\
a_{5} & =-\frac{p_{5} a_{0}+p_{4} a_{1}+p_{3} a_{2}+p_{2} a_{3}+p_{1} a_{4}}{5} \\
& =-\frac{-\lambda+(-\lambda) \lambda+(-\lambda)(-1)+(\lambda-1)+(-\lambda)(\lambda-1)}{5}=-1
\end{aligned}
$$

and hence

$$
Q_{3^{\infty}}(X)=X^{5}+\lambda X^{4}-X^{3}+X^{2}+(\lambda-1) X-1 .
$$

The polynomial $Q_{3 \infty}(X)$ is a generator for the 3-adic Golay code of length 11. By Theorem 2.2,

$$
N_{3^{\infty}}(X)=-\bar{Q}_{3^{\infty}}(X)=X^{5}-(\lambda-1) X^{4}-X^{3}+X^{2}-\lambda X-1,
$$

and

$$
X^{11}-1=(X-1) Q_{3 \infty}(X) N_{3 \infty}(X) .
$$

Example 4.5. Case $n=41, p=2$. Then $k=10$ so that $41=4 k+1$, and λ is a 2 -adic number satisfying

$$
\lambda^{2}-\lambda-10=0
$$

Its 2-adic expansion is chosen to be

$$
\lambda=0+2^{1}+2^{3}+2^{4}+2^{7}+2^{10}+2^{11}+2^{14}+2^{15}+\cdots
$$

and we can compute that

$$
\begin{aligned}
Q_{2^{\infty}}(X)= & X^{20}+\lambda X^{19}+(\lambda+5) X^{18}+(2 \lambda+7) X^{17} \\
& +(4 \lambda+5) X^{16}+(3 \lambda+13) X^{15}+(4 \lambda+13) X^{14}+(6 \lambda+8) X^{13} \\
& +(4 \lambda+16) X^{12}+(4 \lambda+15) X^{11}+(6 \lambda+7) X^{10}+(4 \lambda+15) X^{9} \\
& +(4 \lambda+16) X^{8}+(6 \lambda+8) X^{7}+(4 \lambda+13) X^{6}+(3 \lambda+13) X^{5} \\
& +(4 \lambda+5) X^{4}+(2 \lambda+7) X^{3}+(\lambda+5) X^{2}+\lambda X+1
\end{aligned}
$$

and by Theorem 3.4

$$
\begin{aligned}
N_{2 \infty}(X)= & X^{20}-(\lambda-1) X^{19}-(\lambda-6) X^{18}-(2 \lambda-9) X^{17} \\
& -(4 \lambda-9) X^{16}-(3 \lambda-16) X^{15}-(4 \lambda-17) X^{14}-(6 \lambda-14) X^{13} \\
& -(4 \lambda-20) X^{12}-(4 \lambda-19) X^{11}-(6 \lambda-13) X^{10}-(4 \lambda-19) X^{9} \\
& -(4 \lambda-20) X^{8}-(6 \lambda-14) X^{7}-(4 \lambda-17) X^{6}-(3 \lambda-16) X^{5} \\
& -(4 \lambda-9) X^{4}-(2 \lambda-9) X^{3}-(\lambda-6) X^{2}-(\lambda-1) X+1 .
\end{aligned}
$$

The polynomial $Q_{2 \infty}(X)$ is a generator for the 2-adic quadratic residue code of length 41.

References

[1] A.R. Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des., Codes Cryptogr. 6 (1995), 21-35.
[2] S.T. Dougherty and Y.H. Park Modular cyclic codes (2004), submitted.
[3] P. Kanwar and S.R. López-Permouth, Cyclic codes over the integers modulo p^{m}, Finite Fields Appl. 3 (1997), 334-352.
[4] W.K.Nicholson, Introduction to Abstract Algera, PWS, Boston, 1993.
[5] S.Y. Kim, Liftings of the ternary Golay code, Master's Thesis, Kangwon National University, 2004.
[6] B.R. McDonald, Finite rings with identity, Dekker, New York, 1974.
[7] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, 1977.
[8] V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory 42 (1996), no. 5, 1594-1600.

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea

