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GENERATOR POLYNOMIALS OF THE p-ADIC

QUADRATIC RESIDUE CODES

Sung Jin Kim

Abstract. Using the Newton’s identities, we give the inductive
formula for the generator polynomials of the p-adic quadratic residue
codes.

1. Introduction

Let p be a prime. We use the symbol Zpa to denote the ring Z/paZ
of integers modulo pa for any positive integer a, and Zp∞ for the ring of
p-adic integers. An element u ∈ Zpa may be written uniquely as a finite
sum

u = u0 + pu1 + p2u2 + · · ·+ pa−1ua−1,

and any element of Zp∞ as an infinite sum

u = u0 + pu1 + p2u2 + · · · ,

where 0 ≤ ui ≤ p− 1. The units in Zpa or Zp∞ are precisely those u for
which u0 6= 0. Zpa has characteristic pa, and Zp∞ has characteristic 0.
The finite field of q = pa elements will be denoted by Fq.

For a positive integer m, the Galois extension of Zq of degree m is
denoted by GR(q, m). It is called a Galois ring and it can be realized as

GR(q, m) = Zq[X]/〈h(X)〉
for any monic polynomial of degree m in Z[X], which is irreducible over
Zp. We may choose h(X) so that its root ζ is a (pm − 1)th root of
unity, and GR(q, m) = Zq[ζ]. See [2, 6] for details. Thus any element
s ∈ GR(q, m) can be written as

s = b0 + b1ζ + b2ζ
2 + · · ·+ bm−1ζ

m−1, bi ∈ Zq.
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The map Fr : GR(q, m) → GR(q, m) defined by

Fr(b0 + b1ζ + · · ·+ bm−1ζ
m−1) = b0 + b1ζ

p + · · ·+ bm−1ζ
p(m−1)

is called the Frobenius map. It is the generator of the Galois group of
GR(q, m) over Zq. In particular, the elements of GR(q, m) fixed under
Fr is Zq.

2. Quadratic residue codes over Zpa

Let n 6= 2, 3 be a prime. Let Q ⊂ Zn denote the set of nonzero
quadratic residues modulo n and N denote the set of nonresidues modulo
n.

Let p < n be another prime which is a quadratic residue mod n. Let
q = pa, where a is a positive integer. Let m be the order of p modulo n.
Then n | pm−1 and hence the Galois ring GR(q, m) contains a primitive
nth root of unity α = ζ(pm−1)/n.

Let

(1) Qq(X) =
∏
i∈Q

(X − αi), Nq(X) =
∏
j∈N

(X − αj).

Then the degrees of Qq(x) and Nq(x) are both n−1
2

, and

Xn − 1 =
n−1∏
i=0

(X − αi) = (X − 1)Qq(X)Nq(X).

Since pQ = Q, we have that

FrQq(X) =
∏
i∈Q

(X − αip) =
∏
i∈pQ

(X − αi) = Qq(X),

and similarly pN = N implies that FrNq(X) = Nq(X). Thus Qq(X)
and Nq(X) have coefficients from Zq. Furthermore,

Qpb(X) ≡ Qpa(X) (mod pa)

for all a ≤ b < ∞. We define Qp∞ to be the p-adic limits of Qpa . In
particular,

(2) Qpa(X) ≡ Qp∞(X) (mod pa).

The similar results hold for Nq(X).
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Definition 2.1. The cyclic codes of Zq[X]/(Xn − 1) with generator
polynomials Qq(X), (X − 1)Qq(X), Nq(X) and (X − 1)Nq(X), respec-
tively, are called the quadratic residue codes over Zq and denoted by Qq,
Qq, Nq and N q, respectively. When q = p∞, then they are called the
p-adic quadratic residue codes.

The reciprocal polynomial of a polynomial h(X) = a0 + a1X + · · · +
akX

k of degree k is the polynomial

h̄(X) = ak + ak−1X + · · ·+ a0X
k = h(X−1)Xk.

If h̄(X) = h(X), it is called a self reciprocal polynomial.

Theorem 2.2. Let Qq(X) and Nq(X) be as in (1).

(i) If n = 4k−1, then Nq(X) is the reciprocal polynomial to −Qq(X).
(ii) If n = 4k+1, then Qq(X) and Nq(X) are self reciprocal polynomial.

Proof. Let Zn
∗ = {1, 2, 3, · · ·n− 1}. First note that∑

i∈Zn
∗

i = 1 + 2 + · · ·+ (n− 1) = n · (n− 1)

2
≡ 0 (mod n).

On the other hand, for any b ∈ N we have that bQ = N and hence∑
i∈Zn

∗

i =
∑
i∈Q

i +
∑
j∈N

j =
∑
i∈Q

i +
∑
i∈Q

bi = (1 + k)
∑
i∈Q

i.

Taking k 6= −1, we obtain that

(3)
∑
i∈Q

i = 0.

Furthermore, recall that

(
−1

n

)
= (−1)

n−1
2 . Hence −1 is a quadratic

residue modulo n iff n ≡ 1 (mod 4).
(i) We have |Q| = |N | = 2k − 1. Also −1 is a nonresidue and hence

N = −Q. We will show that Nq(X) = −Qq(X
−1) ·X2k−1. Indeed,

−Qq(X
−1) ·X2k−1 = −

(∏
i∈Q

(X−1 − αi)

)
·X2k−1 = −

∏
i∈Q

(X−1 − αi)X

=
∏
i∈Q

(αiX − 1) =
∏
i∈Q

αi ·
∏
i∈Q

(X − α−i)

= α0 ·
∏
i∈Q

(X − α−i) =
∏
j∈N

(X − αj) = Nq(X).
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Hence, Nq(X) is the reciprocal polynomial to −Qq(X).

(ii) In this case we have that |Q| = |N | = 2k and Q = −Q, N = −N .
We have that

Qq(X
−1) ·X2k =

(∏
i∈Q

(X−1 − αi)

)
·X2k =

∏
i∈Q

(X−1 − αi)X

=
∏
i∈Q

(1− αiX) =
∏
i∈Q

(αiX − 1) =
∏
i∈Q

αi(X − α−i)

=
∏
i∈Q

αi ·
∏
i∈Q

(X − α−i) = α0 ·
∏
i∈Q

(X − α−i) =
∏
i∈Q

(X − αi)

= Qq(X).

Similarly, we can show that Nq(X) = Nq(X
−1) ·X2k. Hence Qq(X) and

Nq(X) are self reciprocal polynomials.

3. Generator polynomials of quadratic residue codes

As in the previous section, let n 6= 2, 3 be a prime, Q ⊂ Zn denote the
set of nonzero quadratic residues modulo n and N the set of nonresidues
modulo n. Let

fQ(X) =
∑
i∈Q

X i, fN(X) =
∑
i∈N

X i.

Theorem 3.1. Let R = Zq[X]/(Xn − 1).

(i) Suppose n = 4k − 1. In R, we have

fQ
2 =

(n− 3)

4
fQ +

(n + 1)

4
fN ,

fN
2 =

(n + 1)

4
fQ +

(n− 3)

4
fN ,

fQ · fN =
(n− 1)

2
+

(n− 3)

4
fQ +

(n− 3)

4
fN .
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(ii) Suppose n = 4k + 1. In R, we have

fQ
2 =

(n− 5)

4
fQ +

(n− 1)

4
fN +

(n− 1)

2
,

fN
2 =

(n− 1)

4
fQ +

(n− 5)

4
fN +

(n− 1)

2
,

fQ · fN =
(n− 1)

4
fQ +

(n− 1)

4
fN .

Proof. These follows from Perron’s Theorem (p.519 in [7]).

The elementary symmetric polynomials s0, s1, s2, · · · , st in
S[X1, X2, · · · , Xt] over a ring S are

si(X1, X2, · · · , Xt) =
∑

i1<i2<···<it

Xi1Xi2 · · ·Xit , for i = 1, 2, · · · , t.

We define s0(X1, X2, · · · , Xt) = 1. It is clear that
(4)

(X−a1) · · · (X−at) = X t−s1(a)X t−1+ · · ·±st(a) =
t∑

i=0

(−1)isi(a)X t−i,

where si(a) = si(a1, a2, · · · , at).
For all i ≥ 1, the i-power symmetric polynomials are defined by

pi(X1, X2, · · · , Xt) = X i
1 + X i

2 + · · ·+ X i
t .

The following Newton’s identities are well-known [4].

Theorem 3.2 (Newton’s identities). For each i ≥ 1,

(5) pi = pi−1s1 − pi−1s2 + · · ·+ (−1)ip1si−1 + (−1)i+1isi,

where si = si(X1, X2, · · · , Xt) and pi = pi(X1, X2, · · · , Xt).

Let Q = {q1, q2, · · · qt}, N = {n1, n2, · · · , nt}.

Theorem 3.3. Let λ = −fQ(α) and µ = −fN(α). Then

(i) λ + µ = 1.
(ii) If n = 4k − 1, then λ and µ satisfy x2 − x + k = 0.
(iii) If n = 4k + 1, then λ and µ satisfy x2 − x− k = 0.

Proof. (i) We have that

0 = αn−1 + αn−2 + · · ·+ α + 1 = fQ(α) + fN(α) + 1.

Thus λ + µ = 1.
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(ii) By Theorem 3.1(i) we have that

λ2 − λ = fQ(α)2 + fQ(α) =
4k − 4

4
fQ(α) +

4k

4
fN(α) + fQ(α)

= k(fQ(α) + fN(α)) = k(−1) = −k.

Similarly, we have that

µ2 − µ = fN(α)2 + fN(α) =
4k

4
fQ(α) +

4k − 4

4
fN(α) + fN(α)

= k(fQ(α) + fN(α)) = k(−1) = −k.

(iii) It can be proved in a similar manner.

Let

si(α
Q) = si(α

q1 , αq2 , · · · , αqt), si(α
N) = si(α

n1 , αn2 , · · · , αnt),

pi(α
Q) = pi(α

q1 , αq2 , · · · , αqt), pi(α
N) = pi(α

n1 , αn2 , · · · , αnt).

Theorem 3.4. Let Qp∞(X) = a0X
t +a1X

t−1 + · · ·+at. Then a0 = 1,
a1 = λ and the other coefficients ai ∈ Zp∞ can be determined inductively
by the formula

ai = −pia0 + pi−1a1 + pi−2a2 + · · ·+ p1ai−1

i
,

where ai = si(α
Q) and pi = pi(α

Q). Moreover each ai is linear in λ,
i.e. has the form αiλ + βi. Analogous statements hold for Np∞(X) =
b0X

t + b1X
t−1 + · · ·+ bt with b0 = 1, b1 = µ. In particular, N2∞(X) can

be obtained by replacing λ in Qp∞(X) by µ = 1− λ.

Proof. The formula for ai follows from the Newton’s identities (5) and
the fact that ai = (−1)isi. We will use the induction to prove that each
ai is linear in λ. a1 = λ has the right form. Suppose aj all are linear in
λ. Then sj = (−1)jaj is linear in λ. Note that each pi−j is linear in λ by
Lemma 4.1. Since λ2 is linear in λ by Theorem 3.3, each pi−jsj is linear,
and thus it is now clear from the formula that ai is linear in λ.

4. Examples

Proposition 4.1. (i) pi(α
Q) =

{
−λ, i ∈ Q,

λ− 1, i ∈ N.
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(ii) pi(α
N) =

{
−µ, i ∈ Q,

µ− 1, i ∈ N.

Proof. (i) If i ∈ Q, then pi(α
Q) = fQ(α) = −λ. If i ∈ N , then

pi(α
Q) = fN(α) = λ− 1.

(ii) If i ∈ Q, then pi(α
N) = fN(α) = −µ. If i ∈ N , then pi(α

N) =
fQ(α) = 1− µ.

Example 4.2. We consider the case n = 7, p = 2. Then k = 2 so
that 7 = 4k − 1, and λ is a 2-adic number satisfying

λ2 − λ + k = λ2 − λ + 2 = 0.

Its 2-adic expansion is chosen to be

λ = 0+21 +22 +25 +27 +28 +29 +210 +211 +212 +215 +216 +217 + · · · .

We have Q = {1, 4, 2} and N = {3, 5, 6}. Thus p1 = p2 = p4 = −λ, and
p3 = p5 = p6 = λ− 1. Write

Q2∞(X) = X3 + a1X
2 + a2X + a3.

Then a1 = λ and

a2 = −p2a0 + p1a1

2
= −−λ− λ2

2
=

λ + λ2

2
= λ− 1

a3 = −p3a0 + p2a1 + p1a2

3
= −λ− 1− λ2 − λ2 + λ

3
= −1,

and hence
Q2∞(X) = X3 + λX2 + (λ− 1)X − 1.

The polynomial Q2∞(X) is a generator for the 2-adic Hamming code of
length 7. By Theorem 2.2 or Theorem 3.4,

N2∞(X) = −Q̄2∞(X) = X3 − (λ− 1)X2 − λX − 1,

and
X7 − 1 = (X − 1)Q2∞(X)N2∞(X).

Example 4.3. We next consider the case n = 23, p = 2. Then k = 6
so that 23 = 4k − 1, and λ is a 2-adic number satisfying

λ2 − λ + 6 = 0.

Its 2-adic expansion is chosen to be

λ = 0 + 21 + 23 + 25 + 26 + 27 + 28 + 211 + 214 + 216 + 217 + · · · .
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We have Q = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} and recall that pi = −λ for
i ∈ Q and pi = λ− 1 for i ∈ N . Write

Q2∞(X) = X11 + a1X
10 + a2X

9 + a3X
8 + a4X

7 + a5X
6

+a6X
5 + a7X

4 + a8X
3 + a9X

2 + a10X + a11.

Then a1 = λ and

a2 = −p2a0 + p1a1

2
= −−λ− λ2

2
=

λ + λ2

2
= λ− 3

a3 = −p3a0 + p2a1 + p1a2

3
= −−λ + (−λ)λ + (−λ)(λ− 3)

3
= −4

a4 = −p4a0 + p3a1 + p2a2 + p1a3

4

= −−λ + (−λ)λ + (−λ)(λ− 3) + (−λ)(−4)

4
= −λ− 3

...

and

Q2∞(X) = X11 + λX10 + (λ− 3)X9 − 4X8 − (λ + 3)X7 − (2λ + 1)X6

−(2λ− 3)X5 − (λ− 4)X4 + 4X3 + (λ + 2)X2 + (λ− 1)X − 1.

The polynomial Q2∞(X) is a generator for the 2-adic Golay code of
length 23. By Theorem 2.2,

N2∞(X) = −Q̄2∞(X) = X11 − (λ− 1)X10 − (λ + 2)X9 − 4X8 + (λ− 4)X7

+(2λ− 3)X6 + (2λ + 1)X5 + (λ + 3)X4 + 4X3 − (λ− 3)X2 − λX − 1,

and
X23 − 1 = (X − 1)Q2∞(X)N2∞(X).

Example 4.4. Case n = 11, p = 3. Then k = 3 so that 11 = 4k − 1,
and λ is a 3-adic number satisfying

λ2 − λ + 3 = 0.

Its 3-adic expansion is chosen to be

λ = 0+31+32+2·33+2·34+2·36+38+2·39+2·311+2·313+314+2·315+· · · .

We have Q = {1, 3, 4, 5, 9} and N = {2, 6, 7, 8, 10}. Thus p1 = p3 = p4 =
p5 = −λ, and p2 = λ− 1. Write

Q3∞(X) = X5 + a1X
4 + a2X

3 + a3X
2 + a4X + a5.
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a1 = λ

a2 = −p2a0 + p1a1

2
= −(λ− 1) + (−λ)λ

2
= −1

a3 = −p3a0 + p2a1 + p1a2

3
= −−λ + (λ− 1)λ + (−λ)(−1)

3
= 1

a4 = −p4a0 + p3a1 + p2a2 + p1a3

4

= −−λ + (−λ)λ + (λ− 1)(−1) + (−λ)

4
= λ− 1

a5 = −p5a0 + p4a1 + p3a2 + p2a3 + p1a4

5

= −−λ + (−λ)λ + (−λ)(−1) + (λ− 1) + (−λ)(λ− 1)

5
= −1

and hence

Q3∞(X) = X5 + λX4 −X3 + X2 + (λ− 1)X − 1.

The polynomial Q3∞(X) is a generator for the 3-adic Golay code of length
11. By Theorem 2.2,

N3∞(X) = −Q̄3∞(X) = X5 − (λ− 1)X4 −X3 + X2 − λX − 1,

and

X11 − 1 = (X − 1)Q3∞(X)N3∞(X).

Example 4.5. Case n = 41, p = 2. Then k = 10 so that 41 = 4k +1,
and λ is a 2-adic number satisfying

λ2 − λ− 10 = 0.

Its 2-adic expansion is chosen to be

λ = 0 + 21 + 23 + 24 + 27 + 210 + 211 + 214 + 215 + · · ·

and we can compute that

Q2∞(X) =X20 + λX19 + (λ + 5)X18 + (2λ + 7)X17

+ (4λ + 5)X16 + (3λ + 13)X15 + (4λ + 13)X14 + (6λ + 8)X13

+ (4λ + 16)X12 + (4λ + 15)X11 + (6λ + 7)X10 + (4λ + 15)X9

+ (4λ + 16)X8 + (6λ + 8)X7 + (4λ + 13)X6 + (3λ + 13)X5

+ (4λ + 5)X4 + (2λ + 7)X3 + (λ + 5)X2 + λX + 1
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and by Theorem 3.4

N2∞(X) =X20 − (λ− 1)X19 − (λ− 6)X18 − (2λ− 9)X17

− (4λ− 9)X16 − (3λ− 16)X15 − (4λ− 17)X14 − (6λ− 14)X13

− (4λ− 20)X12 − (4λ− 19)X11 − (6λ− 13)X10 − (4λ− 19)X9

− (4λ− 20)X8 − (6λ− 14)X7 − (4λ− 17)X6 − (3λ− 16)X5

− (4λ− 9)X4 − (2λ− 9)X3 − (λ− 6)X2 − (λ− 1)X + 1.

The polynomial Q2∞(X) is a generator for the 2-adic quadratic residue
code of length 41.
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