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GENERATOR POLYNOMIALS OF THE p-ADIC
QUADRATIC RESIDUE CODES

SUuNG JIN KM

ABSTRACT. Using the Newton’s identities, we give the inductive
formula for the generator polynomials of the p-adic quadratic residue
codes.

1. Introduction

Let p be a prime. We use the symbol Z,. to denote the ring Z/p*Z
of integers modulo p® for any positive integer a, and Z,~ for the ring of
p-adic integers. An element v € Zy. may be written uniquely as a finite
sum

u =g+ pus + pug + -+ p* g1,
and any element of Z,~ as an infinite sum

u =g+ pus + pug + -,

where 0 < w; < p — 1. The units in Zy. or Z,~ are precisely those u for
which uy # 0. Zy has characteristic p®, and Z,~ has characteristic 0.
The finite field of ¢ = p® elements will be denoted by F,.

For a positive integer m, the Galois extension of Z, of degree m is
denoted by GR(gq,m). It is called a Galois ring and it can be realized as

GR(q,m) = Zy[X]/{h(X))

for any monic polynomial of degree m in Z[X], which is irreducible over
Z,. We may choose h(X) so that its root ¢ is a (p™ — 1)th root of
unity, and GR(q, m) = Z4[¢]. See [2, 6] for details. Thus any element
s € GR(q,m) can be written as

s=0by+ b +b(®++ by 1" b €L,
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The map Fr : GR(q,m) — GR(q,m) defined by
Fr(bo 4 b1+ -+ + b1 C™ 1) = bo + bi¢P + -+ + by (P

is called the Frobenius map. It is the generator of the Galois group of
GR(q,m) over Z,. In particular, the elements of GR(q, m) fixed under
Fris Zy.

2. Quadratic residue codes over Z,.

Let n # 2,3 be a prime. Let  C Z, denote the set of nonzero
quadratic residues modulo n and N denote the set of nonresidues modulo
n.

Let p < n be another prime which is a quadratic residue mod n. Let
q = p*, where a is a positive integer. Let m be the order of p modulo n.
Then n | p™ —1 and hence the Galois ring GR(g, m) contains a primitive
nth root of unity a = ¢®"~D/",

Let

M @0 =[Ix-a) N =[x -),
ieQ JEN
Then the degrees of Q,(z) and N,(z) are both “5*, and
n—1 .
X7 = 1= [[(X = a') = (X = DQ,(X)N,(X).
i=0
Since pQ) = @, we have that
FrQq(X) = H(X - aip> = H (X - ai) = Qq(X),
i€Q iepQ
and similarly pN = N implies that FrN,(X) = N,(X). Thus Q,(X)
and N,(X) have coeflicients from Z,. Furthermore,
Qp(X) = Qp(X) (mod p*)
for all @ < b < co. We define @~ to be the p-adic limits of Qp«. In
particular,
(2) @pe(X) = @pe(X)  (mod p°).
The similar results hold for N,(X).
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DEFINITION 2.1. The cyclic codes of Z,[X]/(X™ — 1) with generator
polynomials Q,(X), (X —1)Q,(X), N,(X) and (X — 1)N,(X), respec-
tively, are called the quadratic residue codes over Z, and denoted by Q,,
Q,, N, and N, respectively. When g = p*, then they are called the
p-adic quadratic residue codes.

The reciprocal polynomial of a polynomial h(X) = ag + a1 X + -+ +
ap X* of degree k is the polynomial
h(X)=ar+ap 1 X+ +aX" =h(XHXF
If h(X) = h(X), it is called a self reciprocal polynomial.

THEOREM 2.2. Let Q,(X) and N,(X) be as in (1).
(i) If n = 4k —1, then N,(X) is the reciprocal polynomial to —Q,(X).
(i) Ifn = 4k+1, then Q,(X) and N,(X) are self reciprocal polynomial.
Proof. Let Z,* = {1,2,3,---n — 1}. First note that
(n—1)

5 = 0 (mod n).

d i=142+-+(n-1)=n
€T
On the other hand, for any b € N we have that b() = N and hence
D= i+ j=> i+ bi=(1+k)) i
i€Zn* i€Q JEN i€Q i€Q i€Q
Taking k # —1, we obtain that

(3) Y i=o.

1€Q

_]_ n—
Furthermore, recall that (—> = (=1)"z". Hence —1 is a quadratic
n

residue modulo n iff n =1 (mod 4).
(i) We have |@Q| = |N| = 2k — 1. Also —1 is a nonresidue and hence
N = —Q. We will show that N,(X) = —Q,(X 1) - X%~ Indeed,

—Qq(X_l) . X2k—1 _ (H(X—l . az)) _X2k—l _ _H(X—l . ai)X
i€eQ ieQ
=[Je'x -1 =]]e" JJ(X -0
i€Q 1€Q 1€Q

=ao’ J[(X —a™) = [J(X — o/) = N(X).

i€Q JEN
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Hence, N,(X) is the reciprocal polynomial to —Q,(X).
(ii) In this case we have that |Q| = |N| =2k and Q = —Q, N = —N.
We have that

Qq(Xfl) L X2k — (H(Xl - az)) L X2k H(Xfl _ Ozi)X

i€Q ieQ
=[Ja-oX)=]J(a’x -1) =] (X —a™
icQ i€eQ 1€Q
= HQZ . H(X — Oz_i) = Oéo . H(X - Oé_i) - H(X - O'/Z)
i€Q  ieQ i€Q €Q
= Qq(X)'

Similarly, we can show that N,(X) = N,(X!)- X?*. Hence Q,(X) and

N,(X) are self reciprocal polynomials. O

3. Generator polynomials of quadratic residue codes

As in the previous section, let n # 2,3 be a prime, () C Z,, denote the
set of nonzero quadratic residues modulo n and N the set of nonresidues
modulo n. Let

=Y X' fv(X)=> X'

1€Q 1EN

THEOREM 3.1. Let R = Z,[X]/(X" —1).

(i) Suppose n =4k — 1. In R, we have

fo? = (nfzg)fQ + %Ll)ffv,
v = (nl—l)fQ + (n;3)fN’
fo-ty=t N g 02D g
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(ii) Suppose n =4k + 1. In R, we have

(n—-1) (n—95)
4 4

(n—1) (n—1)

fo - In= 1 fb+—7r<M-

Proof. These follows from Perron’s Theorem (p.519 in [7]). O

v+

= o+ In+

The elementary symmetric polynomials sg, s1, 89, -+ , S in
S[X1, Xo, -+, Xy] over a ring S are

Si(Xl,XQ,"' ,Xt): Z X’i1Xi2"'Xit7 fori:1,2,--- ,t.
11 <t <---<it
We define so(X7, Xo, -+, X;) = 1. It is clear that
) |
(X—a1)- (X—a) = X' —s1(a) X" - £5,.(a) = Z(—l)isi(a)Xt_i,
i=0

where s;(a) = s;(ay,ag, -, ay).

For all 7+ > 1, the i-power symmetric polynomials are defined by

pi( X1, X, X)) =X+ X5+ + X
The following Newton’s identities are well-known [4].
THEOREM 3.2 (Newton’s identities). For each i > 1,
(5) Pi = Pic181 — Pic1S2 + -+ + (1) prsiy + (1) sy,
where s; = s;(X1, Xo, -+, Xy) and p; = p;i( Xy, Xo, -+, Xy).
Let Q ={q1,q2, - @}, N ={n1,na, - ,n}.
THEOREM 3.3. Let A = —fo(a) and p = — fn(a). Then
(i) A\ +p=1

(ii) If n = 4k — 1, then X\ and pu satisfy 2*> —x + k = 0.
(iii) If n = 4k + 1, then X\ and p satisfy x> —x — k = 0.

Proof. (i) We have that
O=a" ' +a" 2+ +a+1l=fola)+ fx(a) + 1.
Thus A+ p = 1.
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(ii) By Theorem 3.1(i) we have that
N = A= fola) + fala) = 2 fa(a) + 5 fx(a) + fala)
= k(fola) + fn(a)) = k(=1) = —k.

Similarly, we have that

4k

2= = I + fy(e) = T fola) + S (@) + fv(a)

= k(fo(@) + fn(a)) = k(=1) = k.

(iii) It can be proved in a similar manner. O
Let
si(a¥?) = s;(a®,a®, .- a®), si(a”) = s(a™,a", - a™),
pz<aQ) - pi(aql7 aq27 Tty aqt)a pz(aN) - pi(O/”? O/L27 e Jant)'

THEOREM 3.4. Let Qe (X) = apX'+a; X" +---+a;. Thenag =1,
a; = X and the other coefficients a; € Z,~ can be determined inductively
by the formula

_ _ Pbiao + pi—1G1 + Pi—2G2 + -+ - + P1ai—1

a; )

7

where a; = s;(a®) and p; = p;(a®). Moreover each a; is linear in ),
i.e. has the form o;\ + (3;. Analogous statements hold for Ny~ (X) =
bo X'+ b0y X7+ 4 by with by = 1, by = p. In particular, Now(X) can
be obtained by replacing A in Que(X) by p=1—A.

Proof. The formula for a; follows from the Newton’s identities (5) and
the fact that a; = (—1)’s;. We will use the induction to prove that each
a; is linear in A. a; = A has the right form. Suppose a; all are linear in
A. Then s; = (—1)7a; is linear in \. Note that each p;_; is linear in A by
Lemma 4.1. Since A? is linear in A by Theorem 3.3, each p;_;s; is linear,

and thus it is now clear from the formula that a; is linear in \. O
4. Examples
)\ ;
PROPOSITION 4.1. (i) p;(a¥) = ! €@,
A—1, i€ N.
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. ANy — —H, (S Qa
(i) pi(a”) {M S
Proof. (i) If i € @, then p;(a®?) = fo(a) = —A. If i € N, then
pi(a?) = fy(a) =X — 1.
(i) If i € @, then p;(a) = fx(a) = —p. If i € N, then p;(a’) =
fola) =1—p. O
ExAMPLE 4.2. We consider the case n = 7, p = 2. Then & = 2 so
that 7 =4k — 1, and X is a 2-adic number satisfying
NM-A+k=X-A+2=0.
Its 2-adic expansion is chosen to be
A= 0420492495197 198199 4 910 L 91l 4 912 4 915 | 916 | 91T |
We have @ = {1,4,2} and N = {3,5,6}. Thus p; = p, = ps = —\, and
P3s = D5 ZPGZ)\—l. Write
Qo (X) = X? + a1 X2 + s X + as.
Then a; = X\ and

P2ag + p1a; —“A=A2 A+ )\
Ay = — = - = =A—-1
2 2 2
D3ao + pa2aq + pras A—1—-22 )22 4\
a/3 = — — — — _17
3 3
and hence

Qo (X) =X+ AX*+ (A= 1)X — 1.
The polynomial Qs (X) is a generator for the 2-adic Hamming code of
length 7. By Theorem 2.2 or Theorem 3.4,

Naoo(X) = = Q2 (X) = X° = (A= X" = AX — 1,
and
X" —1=(X —1)Qa(X) Ny (X).

ExAMPLE 4.3. We next consider the case n = 23, p = 2. Then k =6
so that 23 = 4k — 1, and A is a 2-adic number satisfying

M —A+6=0.
Its 2-adic expansion is chosen to be

A=0+2" 427427+ 20 42T 428 421 4 21 4 210 1 21T 4.
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We have @ = {1,2,3,4,6,8,9,12,13,16, 18} and recall that p; = —\ for
1 €@ and p; =\—1 for i € N. Write
Qoo (X) = XM+ a1 X' + ap X7 4+ a3 X® + a4 X7 + a5 X°
+agX® 4+ a7 X* 4+ ag X2 + ao X% + a10X + aq;.
Then a; = A and

4y — P20t D1 AN AN

o 2 - 2 2
e p3ao +paar +praz A+ (=ANA+F(=A)(A=3) A
3 = — = — —

3 3
a, — —Pa%o + P3a1 + p2a2 + p1as
4
AR EVAFENA =) F (A1) x_3
— g _
and

Qo (X) = X"+ XX+ (A =3)X? —4X® — (N +3)X — 2 A+ 1)X°®
—2A=3)X? — (AN =X AP+ A+ D)X+ (A - 1DX — 1.

The polynomial Qo (X) is a generator for the 2-adic Golay code of
length 23. By Theorem 2.2,

Nowo(X) = —Qoe (X) = X" = (A= DX" — (A +2)X? —4X®+ (N - 4)XT

+2A =3) X+ A+ DX° + (A +3) X! +4X° — (A= 3) X% - AX — 1,
and

X%~ 1= (X = 1) Qo (X) Nowe (X).
EXAMPLE 4.4. Case n =11, p = 3. Then k = 3 so that 11 =4k — 1,
and A is a 3-adic number satisfying
N —=A+3=0.

Its 3-adic expansion is chosen to be
A= 0+3"4+3%42-3342.3*+2-304-3%+2.374-2.31 +2.3¥ 4 314 1 2.315 1. ..

We have @ = {1,3,4,5,9} and N = {2,6,7,8,10}. Thus p; = p3 = ps =
ps = —A, and po = A — 1. Write

Q3 (X) = X° + a1 X* + ag X? + a3 X + as X + as.



Generator polynomials of the p-adic quadratic residue codes 111

alz)\

ag = —

as — —

ay = —

a5 = —

and hence

P2ao +pran (A=D1 +(=A)A _
2 2
psao +poar +praz - A+ (A= DA+ (=AN)(=1)

= :1
3 3

PaGo + P3ay + Paaz + p1a3

A+ (—A))\4+ A-D(EED)+(=A) y 1

Ps5Qo + Paa1 + p3a42 + P2az + piay

A+ (=A)A+ (5—>\)(—1) + A=+ (=N)A-1)
5)

=1

Qs (X) =X+ AX* = X3 - X2+ (M- 1)X — 1.

The polynomial Q3 (X) is a generator for the 3-adic Golay code of length
11. By Theorem 2.2,

Nyoo(X) = —Q3(X) = X° — (A= DX* = X3 + X2~ \X — 1,

and

XM 1= (X = 1)Que (X) N (X).

EXAMPLE 4.5. Case n =41, p = 2. Then k = 10 so that 41 = 4k +1,
and A is a 2-adic number satisfying

Its 2-adic e

A2 —\—10=0.

xpansion is chosen to be

A=0+2"+2° 420 42T 4210 4 21 2 20

and we can compute that

Qoo (X) =X+ AXY + A +5)XB + 2A + 1) X7

AN+5) X0+ (BA+13) X + (AN +13) XM + (6A +8) X'
AN+ 16) X" + (4N 4+ 15) XM + (6A + 7) X' + (4 + 15) X7
AN+ 16) X% + (6A +8) X7 + (4X + 13) X% + (3N + 13) X°

I
X
4
+ WA +B)X + A+ DX+ A +5)XP+AX + 1

(
(
(
(
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and by Theorem 3.4

Noowo(X) =X — (A= DX — (A= 6)X"™ — (2A —9) X7
— (AA—9)X — (BN —16) X" — (4N —17)X ™ — (6A — 14) X"
— (4N —20) X" — (4N —19) XM — (6) — 13) X0 — (4N — 19)X?
— (4N —20) X% — (6A — 14) X7 — (4X — 17) X% — (3A — 16) X°
— (A =NX* -~ (2A - 9X*  — (A —6)X - (A —1)X +1.

The polynomial Qs (X) is a generator for the 2-adic quadratic residue
code of length 41.
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