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DIRECT PROOF OF EKELAND’S PRINCIPLE IN

LOCALLY CONVEX HAUSDORFF TOPOLOGICAL

VECTOR SPACES

Jong An Park

Abstract. A.H.Hamel proved the Ekeland’s principle in a locally
convex Hausdorff topological vector spaces by constructing the norm
and applying the Ekeland’s principle in Banach spaces. In this paper
we show that the Ekeland’s principle in a locally convex Hausdorff
topological vector spaces can be proved directly by applying the
famous general principle of H.Brézis and F.E.Browder.

1. Introduction

H.Brézis and F.E.Browder[1] put forward the following general princi-
ple in nonlinear functional analysis which unifies the proofs of Ekeland’s
variational principles[3] and Caristi-Kirk fixed point theorem [2]and Bishop-
Phelps lemma and Danes̆’ drop theorem. Also the invariance theorems
for closed sets under flows in metric spaces were proved by the same
principle in [1]. We define S(x) = {y ∈ X|y ≥ x} in a ordered set X.

Theorem 1.1. [1] Let X be a Hausdorff topological space with an
ordering structure. Let ψ : X → R be a function bounded below.
Assume

1. S(x) is sequentially closed for each x ∈ X;
2. x ≤ y and x 6= y imply ψ(y) < ψ(x);
3. any increasing sequence is relatively compact.

Then for each a ∈ X there exists ā ∈ X such that a ≤ ā and ā is
maximal.
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We define the Minkowski functional µS of a subset S of the topological
vector space X to be

µS(x) := inf{t > 0 : x ∈ tS}.

And we define dom µS =
⋃

t>0 tS and µS(x) = ∞, x /∈ dom µS. Let
{pλ}λ∈Λ be a base of continuous seminorms generating the topology on
a locally convex topological space X. Then we call X be a sequentially
complete iff every pγ-Cauchy sequence converges. Furthermore f : X →
(∞,∞] is called proper if {x|f(x) <∞} 6= ∅ and let dom f = {x|f(x) <
∞} and it is a sequentially lower semi-continuous function iff for every
c ∈ R, {x ∈ X|f(x) ≤ c} is sequentially closed.

Lemma 1.1. Let S ⊂ X be a sequentially closed, bounded and convex
set of a Hausdorff locally convex topological space X containing 0. Then
the followings hold;

1. µS : X → [0,∞] is an extended-valued proper and sequentially
lower semi-continuous function

2. for any x, y ∈ dom µS we have x+ y ∈ dom µS and

µS(x+ y) ≤ µS(x) + µS(y)

3. for any x, y ∈ dom µS, x− y ∈ dom µS we have

µS(x)− µS(y) ≤ µS(x− y).

Proof. 1. Clearly since 0 ∈ S, µS(0) = 0, µS is proper. We must
prove that Cc = {x ∈ X| µS(x) ≤ c} is sequentially closed for any
c ∈ [0,∞]. Indeed if c = ∞, Cc = X is sequentially closed. if
0 ≤ c <∞, and xn ∈ Cc and xn → y, then µS(xn) ≤ c. Hence for
each n there exists αn, sn ∈ S such that

0 ≤ αn ≤ c+
1

n
, xn = αnsn.

Suppose αni
→ 0 for some ni, then xni

= αni
sni

→ 0 because S is
bounded. That is, y = 0 and µS(y) = 0 ≤ c, y = 0 ∈ Cc. Suppose
0 < δ ≤ αn ≤ c + 1

n
for all sufficiently large n, then αni

→ α for
some ni and 0 < δ ≤ α ≤ c. Therefore

xni

αni

= sni
→ y

α
.

Since S is sequentially closed, y
α
∈ S and y ∈ αS, µS(y) ≤ α ≤ c.

Hence y ∈ Cc.
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2. Suppose x, y ∈ dom µS, then for any s, t > 0 such that µS(x) <
s, µS(y) < t we have x

s
, x

t
∈ S because S is convex and 0 ∈ S. Let

u = x+ y and from the convexity of S we have

x+ y

u
= (

s

u
)
x

s
+ (

t

u
)
x

t
∈ S.

So x + y ∈ uS, µS(x + y) ≤ u = s + t. Therefore µS(x + y) ≤
µS(x) + µS(y).

3. for any x, y ∈ dom µS, x− y ∈ dom µS, by 2

µS(x) = µS((x− y) + y) ≤ µS(x− y) + µS(y)

That is

µS(x)− µS(y) ≤ µS(x− y).

We relate the Minkowski functional µS with a family of continuous
seminorms pλ.

Lemma 1.2. Let S ⊂ X be a sequentially closed, bounded and convex
set of a Hausdorff locally convex topological space X containing 0. Let
{pλ}λ∈Λ be a base of continuous seminorms generating the topology on
X . Then there exists {αλ}λ∈Λ a family of positive numbers such that

1

αλ

pλ(x) ≤ µS(x), x ∈ dom µS.

Proof. Since S is bounded in X, for any λ ∈ Λ there exists αλ > 0
such that S ⊂ αλUλ, where Uλ := {x ∈ X| pλ(x) ≤ 1}. Then µUλ

= pλ.
Therefore for any x ∈ S

1

αλ

pλ(x) =
1

αλ

µUλ
(x) ≤ µS(x).

Suppose x ∈ dom µS and µS(x) < t then x ∈ tS, x = ts, t > 0, s ∈ S.
That is,

1

αλ

pλ(x) =
1

αλ

pλ(ts) =
t

αλ

pλ(s) ≤ tµS(s) ≤ t

because µS(s) ≤ 1 for any s ∈ S. Hence

1

αλ

pλ(x) ≤ µS(x), x ∈ dom µS.
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2. Main proof

Instead of the methods of proof in A.H.Hamel [4] we prove the fol-
lowing Ekeland’s principle in locally convex Hausdorff spaces by using
the above general principle directly.

Theorem 2.1. Let X be a Hausdorff locally convex topological space
that is sequentially complete. Let f : X → R be a sequentially lower
semi-continuous function, bounded below. Let {pλ}λ∈Λ be a base of con-
tinuous seminorms generating the topology on X and {γλ}λ∈Λ a family
of positive numbers. Then for every x0 ∈ X there exists x∗ ∈ X such
that

f(x∗) + γλpλ(x
∗ − x0) ≤ f(x0)

for all λ ∈ Λ, and for all x ∈ X, x 6= x∗ there exists µ ∈ Λ such that

f(x∗) < f(x) + γµpµ(x− x∗).

Proof. Let X be equipped with an ordering

x ≤ y iff f(y)− f(x) ≤ −γµpµ(y − x) ∀µ ∈ Λ.

Indeed it is an ordering on X. That is,

• x ≤ x
• x ≤ y and y ≤ x imply x = y
• x ≤ y and y ≤ z imply x ≤ z

Clear ≤ is reflexive. If x ≤ y and y ≤ x , then

f(y)− f(x) ≤ −γµpµ(y − x) ∀µ ∈ Λ

and
f(x)− f(y) ≤ −γµpµ(x− y) ∀µ ∈ Λ.

Therefore we have

0 ≤ −γµ(pµ(y − x) + pµ(x− y)) ∀µ ∈ Λ.

Hence pµ(x − y) ≤ −pµ(y − x) ∀µ ∈ Λ. Since pµ ≥ 0, we have pµ(x −
y) = 0 ∀µ ∈ Λ. Since X is Hausdorff, x = y. We showed that ≤ is
antisymmetric. To prove that ≤ is transitive, if x ≤ y and y ≤ z , then

f(y)− f(x) ≤ −γµpµ(y − x) ∀µ ∈ Λ

and
f(z)− f(y) ≤ −γµpµ(z − y) ∀µ ∈ Λ.

Then
f(z)− f(x) ≤ −γµ(pµ(y − x) + pµ(z − y)) ∀µ ∈ Λ.
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Since pµ(z − x) ≤ pµ(y − x) + pµ(z − y),

f(z)− f(x) ≤ −γµ(pµ(y − x) + pµ(z − y)) ≤ −γµpµ(z − x) ∀µ ∈ Λ.

Hence z ≤ x. In order to apply the above theorem by replacing f = ψ
in [1],

1. Since f is sequentially lower semi-continuous, S(x) is sequentially
closed for each x ∈ X;

2. If x ≤ y and x 6= y, then there exists µ0 ∈ Λ such that pµ0(y−x) > 0
because X is Hausdorff. Hence

f(y)− f(x) ≤ −γµ0pµ0(y − x) < 0, f(y) < f(x);

3. for any increasing sequence xn

xn+1 ≥ xn, f(xn+1)− f(xn) ≤ −γµpµ(xn+1 − xn) ≤ 0 ∀µ ∈ Λ.

Therefore {f(xn)} is decreasing and bounded below. So {f(xn)}
converges. Hence for any µ ∈ Λ, xn is pµ−Cauchy. Since X is
sequentially complete, {xn} converges inX. Hence {xn} is compact
and relatively compact.

From the above principle for any x0 ∈ Xthere exists x∗ ∈ S(x0) such
that x∗ is maximal. Since x∗ ∈ S(x0) ,

f(x∗) + γλpλ(x
∗ − x0) ≤ f(x0)

for all λ ∈ Λ. Since x∗ is maximal, for all x 6= x∗ ∈ X there exists µ ∈ Λ
such that

f(x∗) < f(x) + γµpµ(x− x∗).

Theorem 2.2. [4] Let X be a Hausdorff locally convex topological
space that is sequentially complete. Let f : X → (∞,∞] be an extended-
valued proper and sequentially lower semi-continuous function, bounded
below. Let {pλ}λ∈Λ be a base of continuous seminorms generating the
topology on X and {γλ}λ∈Λ a family of positive numbers. Then for every
x0 ∈ domf there exists x∗ ∈ X such that

f(x∗) + γλpλ(x
∗ − x0) ≤ f(x0)

for all λ ∈ Λ, and for all x 6= x∗ there exists µ ∈ Λ such that

f(x∗) < f(x) + γµpµ(x− x∗).
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Proof. For fixed x0 ∈ domf let us give the same ordering on the
following sequentially closed subset C of X

C = {x ∈ X|f(x) + γµpµ(x− x0) ≤ f(x0) ∀γ ∈ Λ}.
That is,

x ≤ y(∈ C) iff f(y)− f(x) ≤ −γλpγ(y − x) ∀γ ∈ Λ.

Indeed it is an ordering on C that satisfies the three conditions of the
above general principle. So C has a maximal x∗. We must prove for all
x 6= x∗ there exists µ ∈ Λ such that

f(x∗) < f(x) + γµpµ(x− x∗).

If x ∈ C(6= x∗), it is not x∗ ≤ x, so the conclusion holds. If x /∈ C(6= x∗)
and x ∈ domf ,

f(x) + γµpµ(x− x0) > f(x0)

for some µ ∈ Λ. And since x∗ ∈ C,

f(x∗) + γµpµ(x∗ − x0) ≤ f(x0).

It follows that

f(x∗) + γµpµ(x∗ − x0) ≤ f(x0) < f(x) + γµpµ(x− x0).

Since pµ(x− x0) ≤ pµ(x∗ − x0) + pµ(x− x∗),

f(x∗) < f(x) + γµpµ(x− x∗)

for some µ ∈ Λ. If x /∈ domf , clearly the inequality holds.

Theorem 2.3. [4] Let X be a Hausdorff locally convex topological
space that is sequentially complete. Let f : X → (∞,∞] be an extended-
valued proper and sequentially lower semi-continuous function, bounded
below. Let S ⊂ X be a sequentially closed, bounded and convex set
such that 0 ∈ S. Then for every r > 0, x0 ∈ domf there exists x∗ ∈ X
such that

f(x∗) + rµS(x∗ − x0) ≤ f(x0),

and for all x ∈ X, x 6= x∗ we have

f(x∗) < f(x) + rµS(x− x∗).

Proof. Let us fix x0 ∈ domf, r > 0. From the sequentially lower semi-
continuity of f, µS in Lemma 1.1(1), the following subset X ′ ⊂ X is
sequentially closed.

X ′ = {x ∈ X|f(x) + rµS(x− x0) ≤ f(x0)}
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Let {pλ}λ∈Λ be a base of continuous seminorms generating the topology
on X . Then by Lemma 1.2 there exists {αλ}λ∈Λ a family of positive
numbers such that

1

αλ

pλ(x) ≤ µS(x), x ∈ dom µS.

Let us γλ = r
αλ

for all λ ∈ Λ. We give the following order structure on

X ′. That is,

x ≤ y(∈ X ′) iff f(y)− f(x) ≤ −γλpλ(y − x) ∀λ ∈ Λ.

Indeed it is an ordering on C that satisfies the three conditions of the
above general principle. So X ′ has a maximal x∗. We prove that for all
x ∈ X(6= x∗)

f(x∗) < f(x) + µS(x− x∗).

If x − x∗ /∈ dom µS, this inequality holds. Hence we may assume that
x− x∗ ∈ dom µS. Since x∗ ∈ X ′, x∗ − x0 ∈ dom µS. By Lemma 1.1(2)

x− x0 ∈ dom µS. If x ∈ X ′(6= x∗) , then x∗ � x and there exists µ ∈ Λ
such that

f(x∗) < f(x) + γµpµ(x− x∗).

Since x− x∗ ∈ dom µS, γµpµ(x− x∗) ≤ rµS(x− x∗) and

f(x∗) < f(x) + γµpµ(x− x∗) ≤ f(x) + rµS(x− x∗).

If x /∈ X ′(6= x∗) ,then

f(x) + rµS(x− x0) > f(x0)

And since x∗ ∈ X ′,

f(x∗) + rµS(x∗ − x0) ≤ f(x0).

Since x− x0 ∈ dom µS and (x− x0)− (x∗ − x0) = x− x∗ ∈ dom µS, by
Lemma 1.1(3) it follows that

µS(x− x0)− µS(x∗ − x0) ≤ µS(x− x∗).

From

f(x∗) < f(x) + r(µS(x− x0)− µS(x∗ − x0)) ≤ f(x) + µS(x− x∗).
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