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DIRECT PROOF OF EKELAND’S PRINCIPLE IN
LOCALLY CONVEX HAUSDORFF TOPOLOGICAL
VECTOR SPACES

JONG AN PARK

ABSTRACT. A.H.Hamel proved the Ekeland’s principle in a locally
convex Hausdorff topological vector spaces by constructing the norm
and applying the Ekeland’s principle in Banach spaces. In this paper
we show that the Ekeland’s principle in a locally convex Hausdorff
topological vector spaces can be proved directly by applying the
famous general principle of H.Brézis and F.E.Browder.

1. Introduction

H.Brézis and F.E.Browder[1] put forward the following general princi-
ple in nonlinear functional analysis which unifies the proofs of Ekeland’s
variational principles[3] and Caristi-Kirk fixed point theorem [2]and Bishop-
Phelps lemma and Danes’ drop theorem. Also the invariance theorems
for closed sets under flows in metric spaces were proved by the same
principle in [1]. We define S(z) = {y € X|y > =} in a ordered set X.

THEOREM 1.1. [1] Let X be a Hausdorff topological space with an
ordering structure. Let v : X — R be a function bounded below.
Assume

1. S(x) is sequentially closed for each x € X;

2.z <y andz #y imply P(y) < (z);
3. any increasing sequence is relatively compact.

Then for each a € X there exists a € X such that a« < a and a is
maximal.
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We define the Minkowski functional pg of a subset S of the topological
vector space X to be

ps(x) :==1inf{t > 0: 2 € tS}.

And we define dom ps = J,otS and pg(r) = oo,z ¢ dom pg. Let
{Pr}rea be a base of continuous seminorms generating the topology on
a locally convex topological space X. Then we call X be a sequentially
complete iff every p,-Cauchy sequence converges. Furthermore f : X —
(00, 00 is called proper if {z|f(x) < oo} # () and let dom f = {z|f(z) <
oo} and it is a sequentially lower semi-continuous function iff for every
ce R, {z € X|f(x) < c} is sequentially closed.

LeEMMA 1.1. Let S C X be a sequentially closed, bounded and convex
set of a Hausdorff locally convex topological space X containing 0. Then
the followings hold;

1. pg : X — [0,00] is an extended-valued proper and sequentially
lower semi-continuous function
2. for any x,y € dom g we have x +y € dom ug and

ps(r +y) < ps(z) + ps(y)
3. for any x,y € dom pg,r —y € dom ug we have

ps(z) — ps(y) < ps(r —y).

Proof. 1. Clearly since 0 € S, us(0) = 0, pg is proper. We must
prove that C. = {z € X| ps(x) < ¢} is sequentially closed for any
¢ € [0,00]. Indeed if ¢ = o0, C. = X is sequentially closed. if
0<¢< o0, and z, € C, and x,, — y, then ug(x,) < c. Hence for
each n there exists a,, s, € S such that

0<a,<c+ —, T, = QpSp.
n

Suppose a,,, — 0 for some n;, then x,, = a,,s,, — 0 because S is
bounded. That is, y = 0 and ps(y) =0 < ¢,y = 0 € C.. Suppose
0<d<a, <c+ % for all sufficiently large n, then a,,, — « for
some n; and 0 < § < a < ¢. Therefore

Since S is sequentially closed, £ € S and y € aS, us(y) < a < c.
Hence y € C..
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2. Suppose x,y € dom g, then for any s,t > 0 such that ps(z) <
s, us(y) <t we have 2,2 € S because S is convex and 0 € S. Let
u = x + y and from the convexity of S we have

rT+y s
T
Soz+y € uS, us(x +y) < u = s+ t. Therefore pus(z + y) <
s () + ps(y)-

3. for any x,y € dom pg,x —y € dom g, by 2

x t.x

ps(x) = ps((z —y) +y) < ps(x —y) + ps(y)
That is
ps(x) — ps(y) < ps(e —y).
O

We relate the Minkowski functional pug with a family of continuous
seminorms py.

LEMMA 1.2. Let S C X be a sequentially closed, bounded and convex
set of a Hausdorff locally convex topological space X containing 0. Let
{pr}rear be a base of continuous seminorms generating the topology on
X . Then there exists {a)}rep a family of positive numbers such that

1
a—pA(JJ) < pus(x),z € dom pug.
A

Proof. Since S is bounded in X, for any A € A there exists a, > 0
such that S C ap\Uy, where Uy := {x € X| pa(x) < 1}. Then uy, = pa.
Therefore for any = € S

aiApA<I> - aiu (2) < ps(a).

Suppose = € dom ug and pug(z) < t then z € tS;z = ts,t > 0,s € S.
That is,

1 1 t
- ts) = — <t <t
Oé/\p/\(x) — Oé)\p)\( 8) Oé,\p)\(S) — /’LS(S) —

because ug(s) < 1 for any s € S. Hence
1

a_/\P/\@) < ps(x),z € dom pg.
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2. Main proof

Instead of the methods of proof in A.H.Hamel [4] we prove the fol-
lowing Ekeland’s principle in locally convex Hausdorff spaces by using
the above general principle directly.

THEOREM 2.1. Let X be a Hausdorff locally convex topological space
that is sequentially complete. Let f : X — R be a sequentially lower
semi-continuous function, bounded below. Let {py} ea be a base of con-
tinuous seminorms generating the topology on X and {7v)}xea a family
of positive numbers. Then for every xo € X there exists z* € X such
that

f(@") +mpa(a™ — 20) < f(o)
for all A € A, and for all x € X,z # x* there exists p € A such that
f(@™) < f(@) + qupu(e — 7).
Proof. Let X be equipped with an ordering

z <yiff f(y) — f(2) < =upuly — ) Vi € A
Indeed it is an ordering on X. That is,
o x <z
o r <yandy<ximplyxr=y
e rx<yandy <zimplyxr <z
Clear < is reflexive. If z <y and y < z , then

f) = f(x) < —vupuly — ) Vi € A
and
f(@) = f(y) < —yupulr —y) Yo € A
Therefore we have
0 < —u(pu(y — ) + pu(r —y)) Y € A.

Hence p,(z —y) < —pu(y —x) Vu € A. Since p, > 0, we have p,(z —
y) = 0 Vu € A. Since X is Hausdorff, x = y. We showed that < is
antisymmetric. To prove that < is transitive, if x <y and y < z , then

fy) = f(2) £ —yupuly — ) Y € A
and
f(2) = fly) £ =vupu(z —y) YV € A
Then
f(Z) - f(l’) < _Vu(pu(y - IL’) +Py(z - y)) Y e A.
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Since pu(z - :17) < pu(?/ - x) —|—pu(2’ - y)v

f(2) = f(@) < —9u(puly — 2) + pu(z — y)) < —yupu(z — ) Y € A
Hence z < z. In order to apply the above theorem by replacing f = ¢
in [1]

1. Since f is sequentially lower semi-continuous, S(x) is sequentially
closed for each x € X;

2. If x < yand x # y, then there exists py € A such that p,, (y—=z) > 0
because X is Hausdorff. Hence

fy) = f(2) < =Yooy — ) <0, f(y) < f(2);

3. for any increasing sequence x,,

Tny1 2 Tny f(Tni1) = f(@0) < =Yupp(Tnp — 2,) <0V € A

Therefore {f(x,)} is decreasing and bounded below. So {f(z,)}
converges. Hence for any u € A, z, is p,—Cauchy. Since X is
sequentially complete, {z,} converges in X. Hence {z,} is compact
and relatively compact.

From the above principle for any zy, € Xthere exists 2* € S(zg) such
that z* is maximal. Since z* € S(zy) ,
f(@) +mpala™ — z0) < f(20)

for all A € A. Since x* is maximal, for all x # x* € X there exists u € A
such that

f(@®) < f(@) + yppu(z — x7),
O
THEOREM 2.2. [4] Let X be a Hausdorff locally convex topological
space that is sequentially complete. Let f : X — (00, 0] be an extended-
valued proper and sequentially lower semi-continuous function, bounded
below. Let {px}rea be a base of continuous seminorms generating the
topology on X and {~,} ea a family of positive numbers. Then for every
xo € domf there exists x* € X such that
f(@*) + mpa(® — x0) < f(20)
for all A € A, and for all x # x* there exists u € A such that

F@®) < f(@) + yupu(e — ).
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Proof. For fixed o € domf let us give the same ordering on the
following sequentially closed subset C' of X

C ={z € X[f(x) + yupu(z — x0) < flx0) Vy € A}
That is,

r<y(e C)iff f(y) — f(z) < —mp,(y —x) Vy € A.
Indeed it is an ordering on C' that satisfies the three conditions of the

above general principle. So C' has a maximal z*. We must prove for all
x # x* there exists p € A such that

f@®) < f(@) + yppu(e — 2).

If € C(# 2*), it is not 2* < x, so the conclusion holds. If x ¢ C(# z*)
and z € domf,

f(ZL‘) + Vupu(x - 1’0) > f(xO)
for some p € A. And since z* € C,
f(q:*) + f)/upu<x* - 1}0) S f(xO)
It follows that

f(@) + upu(a” — x0) < flwo) < f(2) +Yupp(z — o).
Since p,(z — x) < pu(z* — xo) + pu(z — 2*),
f@®) < f(@) + yupu(z — %)
for some p € A. If © ¢ domf |, clearly the inequality holds. m

THEOREM 2.3. [4] Let X be a Hausdorff locally convex topological
space that is sequentially complete. Let f : X — (00, 0] be an extended-
valued proper and sequentially lower semi-continuous function, bounded
below. Let S C X be a sequentially closed, bounded and convex set
such that 0 € S. Then for every r > 0, xg € domf there exists x* € X
such that

f(@™) +rps(z™ —x0) < flwo),
and for all x € X,z # x* we have

flz™) < f(x) + rug(x — z*).

Proof. Let us fix g € domf,r > 0. From the sequentially lower semi-
continuity of f,pus in Lemma 1.1(1), the following subset X’ C X is
sequentially closed.

X' ={z e X|f(z) +rps(z —x¢) < flzo)}
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Let {px}rea be a base of continuous seminorms generating the topology
on X . Then by Lemma 1.2 there exists {a)}rea a family of positive
numbers such that

1
—pa(@) < ps(x), @ € dom ps.
05Y
Let us v, = O{LA for all A € A. We give the following order structure on
X'. That is,
z<y(e X')iff fy) — f(z) < —mpaly — ) VA € A,

Indeed it is an ordering on C' that satisfies the three conditions of the
above general principle. So X’ has a maximal z*. We prove that for all

r € X(# x%)

f@®) < f(@) + ps(z —a®).
If © —2* ¢ dom g, this inequality holds. Hence we may assume that
r —x* € dom pg. Since z* € X', 2* — xy € dom pg. By Lemma 1.1(2)
r —x9 € dom ug. If x € X'(# 2*) , then z* i x and there exists yu € A
such that

f(@") < f(@) + yupu(z — z7).
Since x — z* € dom g, Vupu(r — %) < rus(z — z*) and
fx") < f(x) +yupu(z — %) < f(z) + rps(z — 7).
If 2 ¢ X'(# 2*) then
flz) +rus(z —xo) > f(xo)
And since z* € X',
f@®) +rps(z™ —x0) < fzo).

Since z — xy € dom pug and (x — o) — (z* — xg) = x — z* € dom g, by
Lemma 1.1(3) it follows that

ps(x — xo) — ps(x™ — o) < ps(x — 7).
From
f(@®) < f(x) +r(ps(® —x0) — ps(x™ — x9)) < f(2) + ps(x —z*).
O
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