상태변수와 입력변수에 시간지연을 갖는 불확정 동적 시스템의 제어기 설계

Delay-Dependent Stabilization for Uncertain Dynamic Systems with State and Input Delays

  • 조현주 (영남대학교 전기공학과) ;
  • 박주현 (영남대학교 전기공학과)
  • 발행 : 2005.04.01

초록

This paper aims at asymptotic stabilization for uncertain dynamic systems with state and input delays. We propose a memoryless state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Using Lyapunov method and linear matrix inequality (LMI) approach, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithms. Numerical examples are given to illustrate our main method.

키워드

참고문헌

  1. J. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993
  2. P. Park, 'A delay-dependent stability criterion for systems with uncertain time-invariant delays,' IEEE Translations on Automatic Control, Vol. 44. pp. 876-877, April 1999 https://doi.org/10.1109/9.754838
  3. Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, 'Delay-dependent robust stabilization of uncertain state-delayed systems', International Journal of Control, Vol. 74, pp. 1447-1455, 2001 https://doi.org/10.1080/00207170110067116
  4. M. Wu, Y. He, J. -H She, and G. -P Liu, 'Delay-dependent criteria for robust stability of time-varying delay systems', Automatica, Vol. 40, pp. 1435-1439, 2004 https://doi.org/10.1016/j.automatica.2004.03.004
  5. D. Yue, 'Robust stabilization of uncertain systems with unknown input delay', Automatica, Vol. 40. pp. 331-336, 2004 https://doi.org/10.1016/j.automatica.2003.10.005
  6. L. Xie, 'Output feedback $H_{\infty}$ control of systems with parameter uncertainty', International Journal of Control, Vol. 63, pp.1656-1659, 1996
  7. X. Li and C. de Souza, 'Criteria for robust stability and stabilization of uncertain linear systems with state delay,' Automatica, Vol. 22, pp. 1657-1662, 1997 https://doi.org/10.1016/S0005-1098(97)00082-4
  8. X. Li and C. de Souza, 'Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach', IEEE Translations on Automatic control. Vol. 42, pp. 1144-1148, 1997 https://doi.org/10.1109/9.618244
  9. E. Fridman and U. Shaked, 'An improved stabilization method for linear time-delay systems', IEEE Translations on Automatic Control, Vol. 47, pp. 1931-1937, 2002 https://doi.org/10.1109/TAC.2002.804462
  10. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, linear Matrix Inequalities in Systems and Control Theory, Philadelphia, PA:SIAM, 1994
  11. V. Kapila and W. M. Haddad, 'Memoryless $H_{\infty}$ controllers for discrete time systems with time delay', Automatica, Vol. 35, pp.1443-1451, 1998 https://doi.org/10.1016/S0005-1098(99)00038-2
  12. M. Zribi and M. S. Mahmoud, '$H_{\infty}$-control design for systems with multiple delay', Computers and Electrical Engineering, Vol. 25, pp. 451-475, 1999 https://doi.org/10.1016/S0045-7906(99)00016-6
  13. P. -L. Liu and I.-J. Su, 'Stability for single and large-scale uncertain systems with time-varying delays', IEE Proceeding Control Theory Application, Vol. 146, pp. 591-597, 1999 https://doi.org/10.1049/ip-cta:19990681
  14. S. S. L. Chang, T. K. C. Peng, Adaptive guaranteed cost control of systems with uncertain parameters, IEEE translation on Automatic Control, AC-17 pp. 474-483, 1972 https://doi.org/10.1109/TAC.1972.1100037
  15. I. R. Petersen, Optimal guaranteed cost control and filtering for uncertain linear systems, IEEE translation on Automatic Control, AC-37 pp. 1971-1977, 1994 https://doi.org/10.1109/9.317138
  16. L. Yu, J. Chu, An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica, vol. 35, pp. 1155-1159, 1999 https://doi.org/10.1016/S0005-1098(99)00007-2
  17. Esfahani S. H. Petersen I. R. An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems, International Journal of Robust and Nonlinear Control, vol. 10, pp. 157-174, 2000 https://doi.org/10.1002/(SICI)1099-1239(200003)10:3<157::AID-RNC484>3.0.CO;2-K