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ABSTRACT-A distributed hardware-in-the-loop simulation (HILS) platform is developed for designing an automotive
engine contro]l system. The HILS equipment consists of a widely used PC and commercial-off-the-shelf (COTS) I/O
boards instead of a powerful computing system and custom-made I/O boards. The distributed structure of the HILS system
supplements the lack of computing power. These features make the HILS equipment more cost-effective and flexible. The
HILS uses an automatic code generation extension, REAL-TIME WORKSHOP® (RTW®) of MATLAB® tool-chain and
RT-LAB®, which enables distributed simulation as well as the detection and generation of digital event between simulation
time steps. The mean value engine model, which is used in control design phase, is imported into this HILS. The engine
model is supplemented with some 1/O subsystems and I/O boards to interface actual input and output signals in real-time.
The VO subsystems are designed to imitate real sensor signals with high fidelity as well as to convert the raw data of the
1/0 boards to the appropriate forms for proper interfaces. A lot of attention is paid to the generation of a precise crank/
cam signal which has the problem of quantization in a conventional fixed time step simulation. The detection of injection/
command signal which occurs between simulation time steps are also successfully compensated. In order to prove the
feasibility of the proposed environment, a simple PI controller for an air-to-fuel ratio (AFR) control is used. The proposed
HILS environment and 1/O systems are shown to be an efficient tool to develop various control functions and to validate

the software and hardware of the engine control system.
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1. INTRODUCTION

Over the past few years, the volume of software especi-
ally for engine electronic control unit (ECU) has shown
an almost exponential growth in range and complexity,
because it must fulfill the customers’ demands for power
enhancement as well as the government’s regulations on
emissions reduction and on-board diagnosis. Due to the
increasing complexity and the inter-relationship between
the design of the processes and the design of the control
system, computer-aided methods for modeling, simulation
and the design are increasingly being required. Therefore,
open loop tests have limited functionality for software
testing because the developer cannot simulate the overall
system feedback loops, i.e. the proper test of control
system requires that all control loops are in place and
closed.

Traditionally, control systems are developed and tested
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using open loop testers and prototype vehicles. This is not
only expensive but also time consuming and inflexible. In
contrast, a model based development environment provides
a less expensive alternative where controlled repeatable
tests can be performed in much shorter time periods.
Moreover, the ECU hardware is often developed in
parallel with the control algorithms, and the control
engineers have little time to test and verify the control
algorithms. If a virtual vehicle test environment were
available, a significant part of software development,
verification and system validation could be completed in
a laboratory environment. Hardware-in-the-loop simulation
(HILS) systems provide such a virtual environment for
system validation and verification where some of the
system components are real hardware, and the others are
simulated to mimic hardware components.

From energy production, to aerospace and aeronautics,
to robotics, automotive, naval, and defense, real-time
simulation and support for hardware-in-the-loop model-
ing are increasingly recognized as essential tools for
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design in these and other industries. In the automotive
society, HILS is indeed becoming a standard option for
speeding up the ECU development time, and for ECU
quality assurance. Many successful HILS applications
have been reported recently (Hanselmann, 1996, Maclay,
1997, Isermann et al., 1999, Babbitt and Moskwa, 1999,
Kendall and Jones, 1999, Linjama et al., 2000). In order
to aid development efforts of a large system, Stasko et al.
(1998) generalized HILS method and expanded it to a
versatile HILS laboratory. Recently, Boot et al. (1999)
discussed HILS along with test automation techniques in
order to effectively meet the demands created by the
increasing complexity of the software and the resulting
tests. Raman er al. (1999) and Linjama et al. (2000)
provided requirements for the overall HILS, such as
flexibility, fidelity, expandability, and other criteria.

However, many of the reported HILS equipment
require a complex interface between the real system and
the HILS hardware, as well as a series of expensive and
special computational platforms and I/O interface hard-
ware. As an alternative for these complicated and expen-
sive HILS equipment, PC-based HILS environments
have been studied (Pollini and Innocenti, 2000, Baracos
et al., 2001). These help developers to set up the
experimental system more easily and to test the control
system more efficiently. In this paradigm, Lee et al
(2003) reported a PC-based HILS platform in which an
engine is replaced by the model executed on a real-time
computer system and is developed for designing an
automotive engine control system. The platform consists
of a widely used PC and commercial-off-the-shelf
(COTS) I/O boards. Furthermore, this environment can
be integrated seamlessly into the modern development
process including rapid control prototyping (RCP).

An engine has event-based feature as well as time-
based ones. The event-based feature focuses on the causal
relationships among external events and the actions
performed by a event, i.e., on “why” something happens,
whereas the time-based feature focuses on the timing of
actions, i.e., on “when” something happens. These features
make it difficult to simulate engine behaviors because the
major part of engine I/Os should be synchronized with
the engine event, such as intake, compression, expansion,
and exhaust. Because of this event driven characteristic
of an engine, the accuracy of crank signal generation is
not guaranteed, i.e., the modeled output of a crank angle
sensor is quantized by fixed step time especially at high
engine speed.

This paper proposes a novel modeling and simulation
method for solving the above problem and an integrated
software-hardware solution to HILS platform of an SI
engines. The contents covers the development of the off-
line plant model, proper choice and treatment of an /O
interface, the steps involved in configuring the model to

run in real-time, and the interfacing of an off-line model
with an actual control system.

2. HARDWARE/SOFTWARE ARCHITECTURE

To run research oriented ECUs for engine management
without using a real engine or vehicle, it is necessary to
simulate the electrical signals of the sensors and actuators
plausibly. In order to compose HILS, a powerful com-
puting system is necessary which can emulate behaviors
of the controlled process accurately. This system should
be interfaced with the actual controller in real-time
through the signals of sensors and actuators. In order to
enhance the control system’s productivity, the HILS
should be easy to operate. In other words, this HILS
should be seamlessly integrated in the modern develop-
ment process. In this section, the hardware and software
components of the simulator test bench for the engine
control system are described.

The controlled object and the auxiliary components in
the control loop are replaced by real-time simulations of
their behavior. The only real component in the test setup
may be the ECU itself. The real part of an actuator is not
adopted in the developed HILS because the engine
controller is obviously divided from the actuator, i.e. the
controller does not contain an ignition coil and injector.
Furthermore, as proposed by Baracos er al. (2001),
affordable PC hardware is used as the computing plat-
form for the high-performance electromechanical simulation.

Sufficiently complex system dynamics may overwhelm
even the fastest processor. The solution is to distribute the
simulation and perform parallel processing. The RT-
LAB® environment enables distributed simulation and
parallel processing over a PC cluster (RT-LAB User’s
Guide, 2000). RT-LAB® from Opal-RT Inc. is an industrial
grade software package for engineers who use mathe-
matical block diagrams for simulation, control and
related applications, and is selected for the distributed
simulation and advanced digital signal generation/capture
of the HILS piatform. The RT-LAB® is shown to be an
effective tool for real-time simulations in several studies
(Ozard and Desira, 2000, Papini and Baracos, 2000,
Rabbath et al., 2000, Rabbath et al., 2001, Chiasson and
Tolbert, 2002). The RT-LAB® can detect input events that
occur between computation time steps and compensate
any calculations in order to remove errors that would be
introduced if the event were only detected at the next
time step after the event occurred. This feature is also for
signal generation. We will call these ‘asynchronous event
detection’ and ‘asynchronous signal generation’ respectively.

The physical configuration of the simulation system is
divided into the host and the target sides. On the host
side, the engineer designs his or her model and runs off-
line simulations. On the target side, several micropro-
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cessors are connected via a high-speed communication
network and serve in the execution of the distributed
simulations. The real-time simulation is executed in the
real-time mode with QNX® or Neutrino® real-time
operating system (RTOS). Control of the simulation is
provided by RT-LAB® which sits on the host computer
and communicates with the target nodes via TCP/IP. RT-
LAB® works with the standard SIMULINK® block dia-
gram languages and its code generators to enable parallel,
real-time execution of simulations and input/output inter-
facing. RT-LAB® handles the set up of all the communi-
cations, including real-time data exchanges between
target processors. Figure 1 shows how the HILS model is
integrated with controller and real-time computer hard-
ware. It is subdivided into the following parts:

(a) Command station

(b) Target nodes (real-time computing system)

(c) Signal interface; sensors and actuators

(d) Electronic control unit (ECU)

2.1. Command Station

The Command Station is a PC workstation that operates
under Windows NT, and serves as the user interface.
The model realization is performed with MATLAB®/
SIMULINK® on the command station in order to use all
the benefits of a graphical simulation environment. It is
widely used in industry and academia and is becoming a
standard tool for a capable, cost-effective off-line
simulation solution. MATHWORKS Inc. tool-chain has
the extensions of STATEFLOW®, and REAL-TIME
WORKSHOP® (RTW®). STATEFLOW® enables state
transition, finite state machine type behaviors, to be
integrated with the continuous and discrete time
representations traditionally provided by SIMULINK®.
RTW?® generates optimized, portable, and customizable
code from SIMULINK® models. It frees engineers from
the tedious and error-prone task of writing code. The
separated code is automatically generated from the off-
line simulation model of the engine and downloaded

FireWire
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L S TCP/IP
Timer Board

Target node 2

Figure 1. Hardware components of HILS.

from the command station to the real-time computer
hardware, namely, the target nodes.

A comfortable experimental environment is needed for
the efficient use of the simulator. The simulator operation
is performed with a user interface on the command
station. All the relevant simulation quantities can be
visualized on the command station or logged in real-time
on target nodes. It also offers the possibility to regulate all
the inputs or parameters of the model in the target nodes
while the simulation is in progress. The visualization and
parameter regulation are done via TCP/IP on Ethernet,
which guarantees delivery and ordered queuing of
transmitted packets. Therefore, both the reproducible and
the interactive experiments can be performed through the
command station.

2.2. Target Nodes

Powerful computer hardware is required to fuifill the
real-time constraints for the hard real-time simulation of
the HILS. Though there are plenty of powerful computa-
tional platforms as HILS hardware, it is convenient to use
a commercial PC, as long as they can provide sufficient
computing power to satisfy real-time constraints. The
computer industry is growing exponentially, and high-
performance affordable PCs are used for the low-cost
HILS. Furthermore, a readily available environment
saves the engineer a lot of time that would have otherwise
been spent in becoming experienced.

In this study, the engine model is simulated on two
Neutrino®-based, Pentium IV® 1.8 GHz processor with
512 MB RAM. The engine model is simulated on one
node, while the crank/cam signal generation and spark/
injection signal detection are dedicated to the other node.
The target nodes are connected to the command station
via the Ethernet adapter. These computers also include a
real-time communication interface as well as I/O boards
for accessing external equipment, ECU in this case.
Because there are two QNX nodes, one of them is
designated as the compilation node. The engine model
and auxiliary subsystems are downloaded onto the one of
target nodes (compilation node) and loaded after
compilation, and then executed in real-time. Target nodes
are connected together via the FireWire communication
link; the I/O boards and target nodes are synchronized
through this network.

2.3. Signal Interfaces

For HILS, some real components are located in the
control loop; hence signal interfacing is needed. The
identification and implementation of the interface bet-
ween the computational platform and the controller is
extremely important and very time consuming. The HILS
environment requires signals from the computational
platform to be interfaced with the hardware in the loop.
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During the design phase, one must decide on the
proper portioning of signal processing into available
software and hardware. With respect to interfacing, the
lowest physical interfacing layer provides a complete test
environment for final products, e.g., a custom hardware
circuitry. However, it hinders debugging of the control
algorithm and software validation because the use of a
realistic actuator operating signal with a simulated
process may require considerable effort to design the
signal interface.

The developed HILS assumes no real actuators and
sensors, and all the signals are interfaced in logic-level
for the simulation, i.e., simulated output on the comput-
ing platform. The control-oriented models using logic-
level interfacing provide adequate fidelity for control
software validation. The engine model does not require
any real operating signal to an actuator such as a voltage
of primary/secondary windings of an ignition coil, or the
current imposed on the injector solenoid. Moreover,
because the logic-level signals are used as the interfaces
between a controller and a simulated process, the inter-
faces require neither an extra actuator interface device
nor signal conditioning. The signal interface units of the
developed HILS consist of COTS /O cards, which can
be treated easily by the RT-LAB® block library. PCI-
6703® (National Instruments, Inc.) is used for analog I/O,
and PCIDCC20-P® (ICS Advent, Inc.) is used for timing
/O and clock synchronization. For the real-time communi-
cation between target nodes, FireBoard 400-OHCI (Uni-
brain, inc.) is used.

2.4. Electronic Control Unit

The electronic control system under development is a real
component in the HILS. In the early design phase,
hardware of this electronic control unit is sometimes
unavailable. However, in order to shorten development
period, control and software engineers should design the
controller based on assumed specifications. Therefore,
many engineers use ready-made microcontroller evaluation
boards with simplified customized I/O systems. In this
study, logic-level 1/O signal interface is assumed, and it
helps control and software engineers to develop the
controller with these evaluation boards. MPC555® of
Motorola Inc. is selected as the control unit’s micro-
controller, and has a lot of characteristics which alleviate
implementation difficulies. A Power-PC® core of
MPC555® enables a model-based control due to floating-
point calculation capability, and its sophisticated sub-
modules help code implementation (MPC555 User’s
Manual, 1999).

3. HILS OF SI ENGINES

There are many stages in the typical development cycle
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Figure 2. Overall model structure.

of an engine control system. A number of steps in this
development process require a mathematical model of
the engine for which the controller is being developed.
However, the scope and the intended usage of the model
may differ from one step to the other. When the model is
used in the core control algorithm development stage, a
lot of hardware may not even exist at this stage and they
are modeled very simply or omitted for the convenience
of simulation. As the design matures, more detailed and
complex models may be desired to test the controller. At
the latter stages of the development process, the engine
model is simulated in real-time with the controller module
in a feedback loop. Typically, HILS adapts models that
are used in the control system design phase, and these
models are generally modified to fulfill several require-
ments such as inclusion of sufficient dynamics, exclusion
of implicit equations or algebraic loops, and use of fixed
step size with explicit simulation schemes, such as Euler,
trapezoidal and Runge-Kutta integration methods.

The model is decomposed for the use in RT-LAB®
from within the SIMULINK® window. Since we use one
host-processor and two target-processors, we chose to
decompose the engine HILS model into 3 blocks (console,
master and slave), as shovn in Figure 2. The console
block, SC_Monitoring, contains the display block and
blocks for reset work which is useful for the correction of
numerical error during simulation without halting the
system. The master block, SM_Timing, contains the
timing I/O subsystem including RT-EVENT blocks for
the asynchronous event detect and the asynchronous
signal generation. The remainder of the model has been
placed in the slave block, SS_Engine. This block contains
the engine model subsystem and the analog I/O sub-
system.

The engine model and auxiliary subsystems used for
the HILS are shown in Figure 3 and 4. The models have
been developed in SIMULINK® and STATEFLOW® by
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combining continuous time simulation blocks, finite-state
machines, and textual components. The HILS model is
decomposed hierarchically for the convenience of
representation and management. The model is partitioned
into an engine subsystem, an analog I/O subsystem, and a
timing I/O subsystem. An engine model of the off-line
simulation should be supplemented with other I/O signal
modules to interface actual input and output signals in
real-time. Analog signals, such as from a wide-band
OXygen sensor, a coolant temperature sensor, pressure
sensors, and others, are easily interfaced with the engine
model through relatively simple algebraic equations.
However, synchronization of the timing I/O signals,
including a crankshaft signal, a camshaft signal, and
spark and injection signals, with engine event makes the
interface difficult. These problems are highlighted in the
following sections, especially in subchapter 3.3.

SIGHAL_GEN

Op Sane GoekP

3.1. Engine Subsystem

There have been many studies regarding the development
of the control-oriented dynamic engine model (Yoon and
Sumwoo, 1999, Dobner, 1983, Moskwa and Hedrick,
1992, Hendricks ans Sorenson, 1990, Powell and Cook,
1987). This study employs the engine model developed
by Yoon and Sunwoo (1999). The engine model consists
of three input variables (throttle angle, fuel flow rate, and
spark timing), one disturbance (load torque), and three
state variables (intake manifold pressure, engine speed,
and fuel mass in the fuel film). The applicable operating
range of the engine model is expanded by the inclusion of
the change of minimum spark advance for best torque
(MBT) with respect to the air-to-fuel ratio, and it also can
be extended to lean-burn operations. This mathematical
model is compact enough to run in real time, and its
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accuracy is guaranteed over a wide range of operating
conditions.

The SIMULINK® implementation of the engine model
is shown in Figure 5. The model consists of several
subsystems, and this modularization makes user interface
simple and improves the program module reusability and
software productivity.

3.2. Analog /O Subsystem

The role of the analog /O subsystem (Figure 3) is to
transform physical quantities of the model output into
analog signals required by the engine controller. This
includes manifold absolute pressure, oxygen sensor
signal indicating air-fuel ratio (AFR), throttle position,
and mass air flow rate. Several functions are used to

imitate sensor characteristics and to generate the sensor
signals with the D/A converter. The D/A converter is
configured through some driver blocks of the RT-LAB®
without hand-written codes.

3.3. Timing I/O Subsystem
This subsystem (Figure 4) provides a deliberate interface
between time-based process and event-based control.
Figure 6 shows the root level diagram of the timing I/O
subsystemn. The signal interfaces between HILS and ECU
are accomplished through the counter/timer card. The
timing /O subsystem is comprised of a frequency modu-
lation module, crank/cam signal generation module, and
injection/spark signal measurement module.

The crankshaft angle signal and camshaft signal are
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used to synchronize an engine with an engine control
system. The crankshaft angle and camshaft signals
comprise a series of pulse train, which are normally
generated by a toothed wheel and an magnetic induction
sensors. The synchronized simulation of this kind of
sensor causes demanding requirements on the HILS
hardware. The HILS should generate the crankshaft and
camshaft sensor signals according to changes in the
engine speed, and detect control input signals with
respect to the crankshaft position and simulation time
base. In terms of a time based simulation method, the
crankshaft signal can be thought of as a variable
frequency signal source, and the camshaft signal as a
reference position signal which marks the absolute
position of angle. The spark and injection control signals
should be measured based on these two signals: the
crankshaft and camshaft signals.

When an event-based system is simulated in a time-
based simulation environment, some timing problems
may occur. In the case of an engine HILS, the timing of
the crank/cam signals and the fuel/spark signals should
be carefully considered in the engine model. Thus, the
HILS should generate the crank and cam signals as real
as possible, but a time-based simulator can change the
state of these signals only at the simulation time step.
Therefore, a timing discrepancy appears between the
occurrence of a simulated event and that of a real one,
and this aberration increases as the engine runs faster.
Similar problems may also occur when the HILS
measures the timing of the fuel and spark control signals.
A time-based simulator cannot discern an event which
occurs between the simulation time steps. This also
causes a discrepancy between the timing of an actual
event and the detection of the event by the HILS.
These timing discrepancies degrade the accuracy of the
HILS.

Generally, there exist two simulation techniques which
are used to effectively simulate event-based systems in a
time-base simulation environment. One approach to
enhance the timing accuracy is to use the variable step
size of the simulation time. However, because the
variable step size solution cannot guarantee the termin-
ation time of each simulation step, it cannot be used to
simulate a dynamic plant model in real-time. Another
approach is to utilize a relatively short fixed simulation
time step. This method generally needs more computing
power than the variable step size approach does. In this
case, a multi-rate simulation method is preferable to the
single-rate one. By providing more computing power to
the part which is executed in a small time step, the timing
resolution of the simulation can be enhanced, and the
computing power can be optimized (Lee and Yoon,
2003). Using the conventional time-based techniques,
however, there are unavoidable differences between the
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Figure 7. Frequency modulation module (STATEFLOW®
diagram).

simulated and the actual engine dynamics; this method
cannot remove the problem, just relieve it.

The solution for this problem, the crank signal is
generated with new SIMULINK® blocks coming from
the RT-EVENTS library (Rabbath er al., 2000, RT-
EVENT User’s Guide, 2000). This library comprises a
set of discrete-time blocks that use a compensated
discrete-time simulation algorithm in order to account for
the occurrence of discrete events in between fixed
simulation steps. This avoids propagation of the error
over time. The RT-EVENTS library contains blocks that
compensate for errors introduced by asynchronous
events, and is compatible with SIMULINK®, RTW® and
RT-LAB®. In this study, “Event detector” and “Event
generator” blocks are used (Figure 4).

3.3.1. Frequency modulation (FM) module

During the HILS experiment, all the timing I/O signals
should be synchronized with the engine events. A base
event (base_evnet) is generated by the FM module, and
this pulse-train signal is used as a base signal for
synchronization. The frequency of this signal is the
function of the rotational speed of the crankshaft and the
number of teeth. This frequency varies corresponding to
the engine speed just like frequency modulation, and
therefore this module is named the FM module. As
shown in Figure 7, at each simulation time step, the
engine model gives the engine speed information to the
FM stateflow diagram (FM_sf), which generates pulses,
base_event, at an appropriate frequency. The signal
raw_delta in Figure 6, has the information in decimals,
which are used for asynchronous event detection/signal
generation and are ignored in conventional fixed step
algorithms.
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3.3.2. Crank & cam signal generation module
CRANK_CAM contains four Counter blocks (CNT_*)
which count the signal of base_event. Several sample &
hold and memory blocks are also used for data pro-
cessing (Figure 8). For synchronization with the ECU, a
crank signal should have one or two missing teeth, and a
cam signal should be generated once per two revolutions
of the crankshaft. CNT crank generates a recognition
signal where missing tooth should appears and the result-
ing signal, crank_event, is a more realistic crank event by
adding the missing tooth effect to the base frequency-
modulated signal (base_event). Note that the crank_event
is not a crank signal itself, but an event signal for the
operation of the counter/timer board. CNT_cam generates
the signal for the cam event (cam_event) just as the
CNT _crank generates the crank event. In order to
indicate where the asynchronous signal generation should
occur between fixed simulation steps, the value of delta
is used and transmitted to the counter/timer board (Figure
4) after proper manipulation. Consequently, asynchron-
ous signal generations for crank/cam signals are done by
the Event generator block using crank_event, cam_event
and delta.

Some ECU’s can inject fuel many times over a certain
range of the crankshaft angles. This range is called the
boundary angle by Motorola (Mototola Low-Level
Drivers User’s Guide, 2000), and CNT_bnd generates
bnd_signal for the Injection & spark signal measurement
module, which indicates the allowable range of the
crankshaft angle for additional fuel injection.

3.3.3. Injection & spark signal measurement module
The module for the injection-duration/spark-timing mea-
surement, FUEL_SPARK _sf, is shown in Figure 9. Fuel
injection duration (FUEL_duration) and spark advance
(SPARK_timing) are calculated in FUEL_SPARK _sf. This
module consists of two superstates: one is related to the
fuel injection signals and the other is related to the spark
control signals.

- FUEL

FUEL_ons ..
high_time = sim_clock - (1 - deita_fuel) * crank_sampling_period;
dur_sum=0,

bndf..
FUEY_duration=dur_sum;

me=sim_clock - {1 - deita_fuel) * crank_sampling_period;

FUEL_om .
dur_sum = dur_sum+ (sim_clock - (1 - dolta_fuel) * erank_sampting_period - high_time);

" 8PARK SPARK o/ ...

Y
SPARK_LOW SPARK_RIGH
A

SPARK_off/ ...
SPARK__timing = tooth_cnt * CRANK _resol - TDC ...

+ (sim_clock - {1 - delta_spark} * crank_sampling_periad ...

- (prev_falling_time + falling_deita * crank_sampling_period) } / falling_deg2time;
FUEL_duration = FUEL _duration*1000;

SPARK_timing = SPARK_timing;

Figure 9. Fuel and spark signal measurement module.
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The primary task of FUEL state is to measure the
duration of the fuel injection pulses commanded by the
ECU. The durations of all the fuel injection pulses are
summed during the boundary angle, and the resultant
summation (FUEL_duration) represents the total amount
of the commended fuel. SPARK states check the transi-
tion of the spark control signal and measure the timing of
the signal transition. A spark advance (SPARK_timing) is
measured in the event-based manner. Furthermore, to
more precisely reflect the event-based characteristics of
the engine, the outputs of Event detector block (delta_fuel
and delta_spark) are used for the compensation of fuel
injection duration and spark advance, respectively (Figure
4).

3.4. Configuration
The simulation can be configured in an m-script file of
MATLAB®. This configuration consists of an encoder
related part and a simulation time related part. The
number of encoder teeth and the number of missing teeth
are needed to generate an encoder signal similar to the
real signal, and the top dead center (TDC) position is also
needed for synchronization with the controller.
RT-LAB® software runs on a hardware configuration
consisting of the command station, compilation node,
target nodes, the communication links (real-time and
Ethernet), and the I/O boards. Simulations can be run
entirely on the command Station computer, but they are
typically run on one or more target nodes. For a real-time
simulation, used real-time operating system (RTOS) for
the target nodes is QNX. The Command Station and
target nodes communicate with each other using com-
munication links. For hardware-in-the-loop simulations,
target nodes communicate with the ECU through I/O
boards. Figure 2 shows that the simulation model is
divided into three parts, i.e. the engine subsystem and the
analog 1/0O subsystem is grouped into a relatively slow
part (SS_Engine), while the timing I/O subsystem is
grouped into a relatively fast part (SS_7iming). Each part
has its own function and simulation time step: A fixed
step of 400 usec is used for the simulation of relatively
slow parts, and 100 psec for fast parts.

4. EXPERIMENTAL RESULTS

This section presents the experimental study on the HILS
for an inline 4-cylinder DOHC engine in order to evaluate
the applicability and performance of the simulator. The
HILS equipment is composed of three general-purpose
desktop PCs as shown Figure 10. One PC works as the
command station, which provides a designer with the
monitoring station, another is the target computer
designated to asynchronous event detection and signal
generation, and the third is the second target computer

Figure 10. Photograph of the HILS equipment.

running engine model and analog I/0. Consequently, a
set of target nodes operates like a real engine with the
help of two COTS 1/O boards.

A simple proportional-integral (PI) fuel injection
control law for the air-to-fuel ratio (AFR) control is used
in this experiment.

Figure 11 illustrates the output of the engine model and
the controller, and the time trajectories of the signals are
obtained via MAT files generated during the simulation
run. The timing diagram of the I/O signals is shown in
Figure 12. The throttle angle is changed to simulate a fast
tip-in and tip-out situation. A low pass filter is used to
consider time constant, which corresponds to a time scale
on which an operator can change the throttle angle or a
throttle-by-wire actuator can move the throttle plate. The
wide-band lambda sensor is assumed to have band
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Figure 11. HILS experiment results.
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Figure 12. Timing diagram of closed-loop experiment.

limited white noise. An engine has a 36-toothed wheel
with 1 missing tooth (36-1 type).

One can observe how the AFR controller decreases
and increases the injection duration as a reaction to
changes in the exhaust port AFR. The PI controller is
executed every crank angle of 180 degree in an event-
based manner. The controller calculates the amount of
fuel injection, INJI~INJ4, and the spark timing,
SPKI1~SPK4. The HILS system executes the engine
model based on the input signals, and generates CRANK
and CAM signal for the synchronization and other analog
output signals, such as manifold pressure, AFR, throttle
position, and mass air flow.

5. CONCLUSIONS

Many studies and examples show that HILS is an
efficient tool for the development and testing of engine
control systems. However, the use of this technique faces
some challenging issues such as requirements for complex
interfacing and an expensive computational platform, and
execution of an accurate equipment simulation, which
must operate in real-time.

A new PC-based HILS platform was developed for an
automotive engine control system. This HILS equipment
consists of a widely used PC and COTS /O boards
instead of powerful computing systems and custom-made
I/O boards. These features make the HILS equipment
more cost-effective and flexible. The HILS uses an
automatic code generation extension, RTW® of MATLAB®
tool-chain and this helps the control system developers to
handle the controlled-object model more easily and to
test the control system more comfortably and time-
effectively. RT-LAB® enables model separation to allow
distributed execution, while automatically generating,
downloading, and running real-time distributed simulation.

A mean value engine model, which is used in control
design phase, is imported in this HILS. The engine model
is supplemented with some I/O subsystems and VO
boards to interface actual input and output engine signals
in real-time. While the simulation is running at a regular
time step, an event may occur between two time steps. If

the simulation waits until the next time step to update the
model, a numerical error will be introduced into the
simulation. Using the RT-LAB® and proper timer board,
one can accommodate this time difference and update the
model appropriately. One can also generate digital events
that occur between time steps. Using the special features
of RT-LAB®, the I/O subsystems is designed to detect an
event and generate a signal between simulation time step
in order to synchronize exactly the status of the engine
model with the control system, as well as to convert the
raw data of the I/O boards to the appropriate forms for the
interfacing.

To prove the feasibility of the proposed environment, a
pilot project for the development of an AFR control
system was performed. Based on the monitoring of
relevant signals, it was shown that the solution provided
relatively accurate simulations of the SI engine, i.e., the
quantization of crank signal and inaccurate detection of
injection/spark signals are removed. Furthermore, the
engine model, analog I/O and timing I/O are successfully
executed with the distribution. Consequently, the proposed
HILS environment proved to be an efficient tool for
developing new control functions and testing the soft-
ware and hardware of engine control systems.
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