EDF와 하프변환 기반의 차선관련 정보 검출

Extraction of Lane-Reined Information Based on an EDF and Hough Transform

  • 이준웅 (전남대학교 산업공학과, 자동차연구소) ;
  • 이기용 (전남대학교 산업공학과)
  • Lee Joonwoong (Department of industrial Engineering, Chonnam National University) ;
  • Lee Kiyong (Department of industrial Engineering, Chonnam National University)
  • 발행 : 2005.05.01

초록

This paper presents a novel algorithm in order to extract lane-related information based on machine vision techniques. The algorithm makes up for the weak points of the former method, the Edge Distribution Function(EDF)-based approach, by introducing a Lane Boundary Pixel Extractor (LBPE) and the well-known Hough Transform(HT). The LBPE that serves as a filter to extract pixels expected to be on lane boundaries enhances the robustness of machine vision, and provides its results to the HT implementation and EDF construction. The HT forms the accumulator arrays and extracts the lane-related parameters composed of orientation and distance. Furthermore, as the histogram of edge magnitude with respect to edge orientation angle, the EDF has peaks at the orientations corresponding to lane slopes on the perspective image domain. Therefore, by fusing the results from the EDF and the HT the proposed algorithm improves the confidence of the extracted lane-related information. The system shows successful results under various degrees of illumination.

키워드

참고문헌

  1. K. Sato, T. Goto and Y. Kubota, 'A Study on a Lane Departure Warning System using a Steering Torque as a Warning Signal,' Proc. AVEC' 98, pp.479-484, 1998
  2. M. Brattoli, R. Tasca, A. Tomasini, E. Chioffi, D. Gerna and M. Pasotti, 'A Vision-Based Alert System,' Proc. IEEE Intelligent Vehicles 96, pp.195-200, 1996
  3. J. W. Lee, K. S. Kim, S. S. Jeong and Y. W. Jeon, 'Lane Departure Warning System: Its Logic and On-board Equipment (20005331),' Proc. JSAE, Japan, pp.9-11, 2000
  4. M. Bertozzi and A. Broggi, 'Real-Time Lane and Obstacle Detection on the GOLD System,' Proc. IEEE Intelligent Vehicles 96, pp.213-218, 1996
  5. D. A. Pomerleau and T. Jochem, 'Rapidly Adapting Machine Vision for Automated Vehicle Steering,' IEEE Expert Intelligent Systems and Their App., April, pp.19-27, 1996
  6. U. Hofmann, A. Rieder and E. D. Dickmanns, 'EMS-Vision: Application to Hybrid Adaptive Cruise Control,' Proc. IEEE Intelligent Vehicles 2000, pp.468-473, 2000
  7. E. D. Dickmanns and A. Zapp, 'Autonomous High Speed Road Vehicle Guidance by Computer Vision,' Proc. IFAC 10th Triennial World Congress, pp.221-226, 1987
  8. A. Broggi, 'A Massively Parallel Approach to Real-Time Vision Based Road Marking Detection,' Proc. IEEE Intelligent Vehicles 95, pp.84-89, 1995
  9. D. A. Pomerleau, Neural Network Perception for Mobile Robot Guidance, Kluwer Academic, Boston, 1994
  10. J. W. Lee, C. D. Kee and U. K. Yi, 'A New Approach for Lane Departure Identification,' Proc. IEEE Intelligent Vehicles 03, pp.100-105, 2003
  11. J. W. Lee, 'A Machine Vision System for Lane-Departure Detection,' CVIU, Vol.86, pp.52-78, 2002 https://doi.org/10.1006/cviu.2002.0958
  12. A. D. Bimbo, L. Landi and S. Santini, 'Determination of Road Directions using Feedback Neural Nets,' Signal Process. Vol.32, pp.147-160, 1993 https://doi.org/10.1016/0165-1684(93)90040-H
  13. J. D. Crisman and C. E. Thorpe, 'SCARF: A Color Vision System that Tracks Roads and Intersections,' IEEE Trans. Robotics Automat., Vol.9, No.1, pp.49-58, 1993 https://doi.org/10.1109/70.210794
  14. J. W. Lee, U. K. Lee, and K. R. Baek, 'A Cumulative Distribution Function of Edge Direction for Road Lane Detection,' IEICE, Vol.E84-D, No.9, pp.1206-1216, 2001
  15. R. G. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, 1992
  16. U. K. Yi, R. B. Baek and J. W. Lee, 'Determination of Road Quality Using Fuzzy Neural Network,' ICASE, Vol.8, No.6, pp.468-476, 2002
  17. J. W. Lee, 'A Fuzzy N eural- Network Algorithm for Noisiness Recognition of Road Images,' Transactions of KSAE, Vol.10, No.5, pp.147-159, 2002
  18. O. Faugeras, Three-Dimensional Computer Vision A Geometric Viewpoint, The MIT Press, 1993
  19. K. Yamada, T. Nakano and S. Yamamoto, 'A Vision Sensor Having an Expanded Dynamic Range for Autonomous Vehicles,' IEEE Trans. On Vehicular Tech., Vol.47, No.1, pp.332-341, 1998 https://doi.org/10.1109/25.661058