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FREE LIE SUPERALGEBRAS AND THE
REPRESENTATIONS OF gl(m,n) AND q(n)

JAae-HooN KwON

ABSTRACT. Let .¥ be the free Lie superalgebra generated by a Z-
graded vector space V over C. Suppose that g is a Lie superalgebra
gl{(m, n) or q(n). We study the g-module structure on the kth homo-
geneous component .%% of .% when V is the natural representation
of g. We give the multiplicities of irreducible representations of g
in % by using the character of .%x. The multiplicities are given in
terms of the character values of irreducible (projective) representa-
tions of the symmetric groups.

1. Introduction

Let . be the free Lie algebra generated by a vector space V over
a field k. If V is a representation of a group G (finite or infinite),
then .Z becomes a representation of G, and its homogeneous component
Zi(k > 1) is a submodule of .. Hence, it is natural to ask how .Z(or
%) decomposes into irreducible representations of G whenever it is
semisimple.

Consider V as a representation of its full linear group. For simplicity,
assume that £k = C. Let V = C™ be an m-dimensional vector space
over C, which is the natural representation of GL(m), or gi(m). The
k-fold tensor product of V' is a GL(m)-module and decomposes into
irreducible polynomial representations which are parameterized by the
partitions X of & with length £(\) < m. Let V* be the corresponding
irreducible representation. It is well-known that the multiplicity of V*
in V®* ig given by the dimension of the irreducible representation S* of
the symmetric group Sy corresponding to A ([30, 36]).
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Let .2 be the free Lie algebra generated by V and % (k > 1) its
kth homogeneous component. Then .%} is a finite dimensional GL(m)-
submodule of V®E. In [5], Brandt gave the character of % (i.e. the trace
of diag(z1,--- ,2m) on %)

(1.1) chLe = % S w(dpa(a)
dik

where py(z) = :c‘li +-+-+xd is the dth power symmetric function. Then
from (1.1) and the Frobenius formula, the multiplicity of V?* in .% is
given by

(12) b 57 (@, o v,
dlk

(which was first given by Wever [37]) where ng is the character of S*
and o gr/4y is an element of cycle type (d¥/?) in Sy (see also [20, 21]).
Also, various module structures of free Lie algebras have been studied in
more general cases where V' is a representation of an arbitrary group and
the base field may have positive characteristic (see for example [6, 7, 9]).

In this paper, we will study the module structures of free Lie superal-
gebras generated by a representation of a Lie superalgebra. (see [16] for
a general exposition on Lie superalgebras): The main interests in this
paper are the super-analogues of (1.1) and (1.2). Let V be a Zy-graded
vector space over C, and .Z the free Lie superalgebra generated by V.
We study the module structure of the kth homogeneous component .%;
when V' is the natural representation of a Lie superalgebra gl(m,n) or
g(n). Asthe main results, we describe the multiplicity of each irreducible
representation in .%.

This paper is organized as follows. In section 2, we introduce the
character of %}, given in [26]. We give here an alternative proof for the
character of .Z}; using the homological methods (cf. [19]). The charac-
ter of %} is written as a linear combination of power super symmetric
functions (Theorem 2.1). In section 3, we review some basic facts on
the (super) symmetric functions and the irreducible characters of S
and its double cover §k. Then, in section 4, we derive the multiplic-
ities of irreducible representations in %, combining the character of
2 and the expansion of power (super) symmetric functions into hook
Schur functions and Schur Q-functions respectively (Theorem 4.1 and
4.3). The character values of the symmetric groups appear naturally as
in the case of (1.2). In section 5, we consider the case when .# is the
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free Lie algebra generated by V' = C". We describe the multiplicities of
each irreducible polynomial representation of sp(n) (n : even) and so(n)
in % for 1 < k < n, using the character values of the Brauer algebras
(Proposition 5.3).

Throughout this paper, we assume that the ground field is C.

2. Free Lie superalgebras and characters

In this section, we will derive the character of the homogeneous com-
ponent of a free Lie superalgebra.

A Zs-graded vector space .Z = % 2 is a Lie superalgebra if there
is a bilinear map [, ] : .Z x £ — & such that

(i) [Za, L] C Losp

(ii) [I’y] = _(_l)ab[y’a:]
(i) [, g, 21] = [z 9l 2] + (~1)2[y, [z, 2]
for a,b € Zo and = € %, y € .%,.

Let I" be a countable abelian semigroup (under addition). We assume
that every element in I' can be written as a sum of elements in I in only
finitely many ways, which we call the finiteness condition on T.

Let V = @, cr Va be a I'-graded vector space where each V, =
V(2,008 V|(a,1) s & finite dimensional Zs-graded vector space with dim V, o)
= mq and dimV(4,1) = na. Note that V' = 4 4)erxz, Via.a) 18 also
(I' x Zgz)-graded. Set Vi, = @,er Via,a) for a € Zs.

Consider the free Lie superalgebra . = £ ®.%; generated by V. The
universal enveloping algebra of & is isomorphic to the tensor algebra
T(V) = @0 VE* generated by V (as Zs-graded algebras), and .& can
be embedded into T(V) in such a way that [z,y] =z ®y ~ (-1)%®y®z
forz € V, and y € V4, (a,b € Z2). Since T(V) is I'-graded, .% is also I'-
graded, that is, £ = @, L. Note that the dimension of %, (o € T)
is finite from the finiteness condition on I'.

For each a € T, we set

Lag) = Lo N L,

2.1
(2.1) L) =ZaNA.
Since Lo = ZLa,0) ® L a,1), £ is a (I X Zy)-graded Lie superalgebra.

Set G = [laer Ga © GL(V) where Go = GL(Via0)) X GL(Viqa,1))-
For each (o, a) € T x Za, Z4,q) is a G-module where the action is given
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by
(2.2) g lvifvel - fog—, k] -+ )] = [gualgwal- - - [gu—1, gua] - - 1]]

forgeGandv; €V (1 <i<k).
For each v € T', consider the following variables

g’ = (a1, -+ ,a,) € (C9)™,

v =], 9,) € (C9)™.
For (a,a) € I x Zy, we define the character of Za)
(2.4) ch-Z(ae) = tr((diag(z”, y"))rer|-La,0))-

From the finiteness condition on T, chZ4 0y is a polynomial in z7,y"’s.
The character of %, can be defined in the same way, and it is given by

(2.3)

(2.5) ch%, = Chn%a,o) + Choiﬁa,l).
Next, we define the set of partitions of & (o € T') to be
(26) P(a) = {S = (S’Y)VEF | 8y € ZZOa Zs'y')/ =« }
yel

It is a finite set from the finiteness condition on I'. For s € P(a), we
write |s| = > s, and s! = []s, .

Now, we can state the formula for the character of %, (see [26]). We
give here an alternative proof based on the homological method used in
[19].

THEOREM 2.1. ([26]) For o € T, we have

(2.7) ch%, = Z éu(d) Z ﬂi‘;—l)' de($7,y7)87,

d‘ff:% s€P(B) " yer
where p is the Mobius function and
Moy '['7,,7
(2.8) pa(a”,y7) =Y (&)= (-y])°
i=1 j=1
ford > 1.

Proof. First, we will compute ch%, 4 for (a,a) € T x Zs. Tt is
already given in [19] as the special case of a more general formula
(see (2.17) in section 2). But for the reader’s convenience and self-
containedness, we give a proof restricting the arguments in [19] to the
case of free Lie superalgebras.
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For k > 0, let (L) = @B, gor AT(£0) ® SU(Z1) where AP(Lp) is
the pth alternating space of Ly and S9(.%)) is the gth symmetric space of
2 (note that Cy(¥) = C). The homology modules Hi(.¥) = Hy(.Z,C)

are determined by the following complex:
(2.9)
o OHE) s G (2) B — i(2) M Co(%) — 0,

where the differentials dy : Cr(.Z) — Cr—1(Z) are given by
(2.10)
de((zyr A Axp) @ (Y1 - yg))

= Z (—1) [z, ) AZL A ATy A AT A Ap)

1<s<t<p
®(y1“'yq)
q
A S (D @ A AE A Axp) © ([@s, yelyr - Ge - yg)
s=11t=1
- Z (yssye) Nzt A= ANxp) @ (Y1 Us - Ut -+~ Yq)
1<s<t<g

for k > 2, z; € . %, yj € % and d; =0 (cf. [8],[11]).

From the (I" X Zg)-grading of .&, Cyx(¥) and H(.Z) are (I' x Zsy)-
graded vector spaces, and for each (a,a) € T’ x Zy, we can define
Cth(‘,S,ﬂ)(aﬂ) and Cth(g)(a,a) as in (24) Set

chCi(L) = > chCr(L)(a,a)uv"
(o,a)ET X Zo
Cth(.iﬂ) = Z cth(f)(aﬂ)uo‘va,

(a,0)€T X Zg

(2.11)

where u® is a formal variable satisfying ueuf = yoth (a, 8 €T), and v is
a variable commuting with u® satisfying v?2 = 1. By the Euler-Poincaré
principle, we have

(2.12) D (—1)kchCi(£) = > (~1)¥chH(2).

k>0 E>0
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On the other hand, the left hand side of the above equation can be
written as follows.

> (~1)*chCy(£)

k>0

(2.13) 10
= H exp (—Z " tr(gr.?(a,a))u”"(—v)“‘),

(a,a)€l xZsg r>1

where g = (diag(z”,y"))yer € G. Since Hi(.Z) = V when k = 1 and
Hi(Z) = 0 otherwise (see Corollary 3.2 in [19]), we obtain the twisted
denominator identity of L,

I e —Z@twg’%,anwa(—v)”)

(2.14) (o,0)€T X Zo r>1
=1- Z(m(xﬁ)uﬁ +p1(yﬂ)u'8v),
per

where py (zf) = 3 ﬁ z7 and p1(yP) = Z;ﬁl y?.
For each (8,b) € T X Z2, we set
(2.15)

P(B,b)={s= (s’y,a)('y,a erxZs | $y,a € Z>0, Z sy.a(v,a) = (B,b) }

and write |s| =Y syq and s! =[] 84,4/
Taking the formal 1ogar1thm on the inverse of (2.14), we get

> Z (g "L )" (—0)™

(a,@)€l xZy 721

(2.16)
= Y. W(B,buf(-v),
(B,b)ETXZ2
where
s| — 1
ey wen= Y LD nEnmep.
seP(8,b) ’ vl

By comparing the coefficients of u*(—v)® on both sides and applying
the Mobius inversion, we obtain

(_1)aCh=§’p(a,a) = Z éﬂ'(d)wgd (5, b)

(2.18) o
d(B,b)=(ev0)
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Now, we have

Loy = O (@) {W,a(5,0) + Wya(5,1)}

dB=a
(2.19) deven
+ Z Wd ﬂ’ 0)
dB=a
d:odd
and
1
(2.20) chfony == ), Sud)Wa(B,1).
dB=a
d:odd

For any g € T and d > 1, it is straightforward to check that
Wya(B,0)+(~1)W,a(8, 1)
2.21 sl — 1! R
(2.21) — Z Usi— ! [gl ) de(ﬁ’yvp
s€P(f3) o yer

where pa(z7, ") = S0 (27) — Y0, ()
Therefore, we get

chZy = chZa0) + b )
1

(2.22) dB=a
= 3 @ Y EE T ey
dB=a SEP(B) ) yer

O

If we take g as the identity element in G, then the character of %,
yields the dimension of Z,:

cay 3 @ Y P T n, - 1yt

dB=a sEP(B) " qer

which is a generalization of the Witt’s dimension formula for free Lie
algebras (see [25, 26], also compare with the formula in [18]).

In particular, suppose that I' = N and V;, = 0 for £ > 2, that is,
V =W. Let dimV{; 4y = m and dimV{; ;y = n. Then . = ®k>1 %
is an N-graded free Lie superalgebra. For n > 1, we have P(n) = {n}.
The character of % is the trace of diag(z,y) € GL( ) X G’L( ) on %
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for £ = (21, ,2m) € (C)™ and y = (y1,--* ,Ym) € (C*)". From
(2.7), we have

1
(2.24) chp =+ > wld)palz, 1)/,
dik
where py(z,y) = S x¢ — Z?Zl(—yj)d for d > 1. We will use the

above formula for the main results in this paper.

REMARK 2.2. Though the proof of (2.7) in [26] uses only PBW the-
orem, the importance of the homological method (or Euler-Poincaré
principle) we used here lies in the fact that it can be used when we con-
sider the characters of other class of Lie (super)algebras, for example,
generalized Kac-Moody (super)algebras. In fact, when . is a graded
Lie algebra with a group action, Kac and Kang gave a formula for char-
acters of .Z (or traces on ) by using the homology of Lie algebras
[17]). This was also generalized to the case of graded Lie superalgebras
by Kang and the author in [19]. See also [22].

3. Symmetric functions and characters of the symmetric
groups

In this section, we give a brief review on the (projective) represen-
tations of the symmetric groups, and their characters which are closely
related with the theory of symmetric functions (see [13, 24] for a general
and detailed exposition).

A partition of k (k > 1) is a finite non-increasing sequence A =
(A1,--- ,Ar) of positive integers whose sum is k. We write A + k, and
denote by Z(k), the set of partitions of k. Each )\; is called a part
of A, and r is called the length of A, denoted by £(\). We also write
A= (1™1,2™m2 ...) where m; is the number of the parts of A equal to ¢
(¢ > 1). The conjugate of A is the partition X' = (\], A}, --) where ]
is the number of parts in A which are no less than 4.

3.1. Characters of the symmetric groups

Fix an integer m > 1. Let .5, be the symmetric group. It is generated
by the transposition o; = (¢ i + 1) for 1 < i <m —1. Let 1, -,z
be variables. Sy, acts on Z[zri,--- , %] by permuting the indices of
the variables. Consider Ay, = Z[z1,- -+, &,]%™ the ring of symmetric
functions in m variables. For each partition A with £(\) < m, the Schur
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function corresponding to A is the polynomial s)(z1,---,zm) = sa(x)
given by

(3.1) sy(z) = det(h’)\i—iﬁi(m))lﬁi,jima

where hy.(z) is defined by 3,50 he(z)tF = [[2 (1 — ;) 7! (we assume

that A, = 0 for k& > £()\)). Then {sx(z)|£(\) < m} is a Z-basis of
Ap,. If we multiply two Schur functions, we can write it as a linear
combination of Schur functions again

(3.2) su(@)su(z) =Y Npsa(x),
A

where the coefficients Nli‘u are called the Littlewood-Richardson coeffi-
cients.

Foreach k > 1, set pp(z1,-++ ,Zm) = pe(x) = 25+ - +2zk,. The power
symmetric function corresponding to a partition A, is the polynomial
pa(T1,- -+, Tm) = pa(x) given by

(3.3) pA(T) = pa, (@) - pa, ().

It is known that Q ®z A, = Q[z1,+ -+ ,2m])°™ is generated by pg(z)
(k> 1) and hence spanned by {pr(z)| A : a partition }.

Note that the irreducible representations of Sy are parameterized by
P(k). For A € 2(k), let ng be the irreducible character corresponding
to A, For p = (u1, -+ ,pr) € P(k), let s; (1 < i < 1) be a cycle of
length p; for 1 < ¢ <r, which are mutually disjoint. Then o, = s1--- s
is a permutation of cycle type u. Since a character is determined by
the values at the conjugacy classes of Sg, it suffices to know ng(au).
These values are determined by the coefficient of sy(z) in the expansion
of p,(x) into Schur functions, which is known as the Frobenius formula:

THEOREM 3.1. ([10]) For each u € #(k), we have

A
(3.4) pu(z)= ) x5 (ou)sa(@).
Ak
{N<m

Fix n > 1, and let y;,--- ,y, be variables. Let A/, be the ring of
polynomials f(z,y) in m + n variables x1, -,z and y1,--- ,yn with
integral coefficients satisfying

(1) f is invariant under the action of S, x Sy,

(2) when we put z,, = —y, = ¢, the resulting polynomial is indepen-

dent of ¢.
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We call A,,/, the ring of super symmetric functions in m + n variables
Z1, - ,Tm and y1, - ,Yn. For each partition A = (A1 --- , A,), the hook
Schur function corresponding to X is the polynomial hsy(z,y) given by

(3.5) hsx(z,y) = det(ha,—iv5(®, ¥))1<ij<rs

where hy(z,y) is defined by 3 bx(z, y)t* = [Ti2, (1—z:t) " [T5=, (1+
y;t). It is known that hsy(z,y) # 0 if and only if A is (m, n)-hook shaped,
that is, Am+1 < n. Note that { hsy(z,y) | A : (m,n)-hook shaped } is a
Z-basis of A,/ (see [24, 27]).

Set pi(z,y) = St  xF — Z?Zl(—yj)k (k > 1). For each partition

A= (A1, ), define
(3.6) oa(z,y) = or (2, 9) - (2, 9),

which is called the power super symmetric function corresponding to A.
In [34], it was shown that Q ®z A, /,, generated by px(z,y) (k > 1), and
hence spanned by { px(z,y) |\ : a partition }.

Then, we have the same relation between { hsy(x,y)| A : (m,n)-hook
shaped } and {px(z,y) | A : a partition }, which can be proved in a stan-
dard way.

PROPOSITION 3.2. For X\, p € Z(k), we have

(3.7) pul(z,y) ZXSk(Uu hsa(z,y).
Ak
Proof. Let z1,--- , 2. be variables where r is sufficiently large. Fol-

lowing the arguments in [24] (see Section 4), we obtain the identities
(3.8)

i ™ (1 2
;m(x,y)sx( %’; 1% iglfijz:; Z;%px(m,y)px(z),

where the sum is taken over all partitions and z, is the number of el-
ements in the centralizer of o, in Sy (¢ + k). Note that the above
equation can be viewed as a linear combination of s)(z) and py(z) over
the ring Ay, /p,-

From (3.4) and the orthogonality of characters, we have for A € (k)

(3.9) o)=Y ixékm)pu(z).

7

Hence, we have

1
(3.10) Z ZXsk op)hsx(z, y))pu(z Zzp,\ z,y)pa(2),

PR A
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where A, F k. Since p,(z) are linearly independent for r > k, we
obtain (3.7). O

REMARK 3.3. The formula (3.4) and (3.7) can be interpreted from
the Schur-Weyl duality [4, 32, 31, 36]. For example, when V = 1 = C™,
there is a right Sg-action on V¥ given by

(3.11) (V1@ BUk) 0 =1,01) B ® V(i)

for v; € V and o € Sk. It commutes with a left gl(m)-action on V¥,
and gl(m) and Sy give full centralizers of each other. By taking a trace
of an element o, x diag(z1, -+ , &) on V&, we can recover (3.4). For
a general review on the duality theorems of various algebras and their
relations with the Frobenius formula, the readers are referred to [1].

3.2. Spin characters of the double cover of the symmetric
groups

For a given partition A, we say that X is strict if all parts of X are
distinct, and A is even (resp. odd) if all parts of A are even (resp. odd).

Let I'y, be the subring of A, generated by gx(x) (k > 1) where gg(x)
is defined by 3,5 qr(2)tF = [T (1 — ta;) 711 + ty).

For each partition A = (A1, -+, \p), the Schur Q-function corre-
sponding to A is the polynomial Qy(z) given by

(312) Q,\(-’r) = 26()\) Z o x’l\l .. xf\nm H (l‘i + ’EJ) i

o€ Sm /S ansa, (@)

where S,’}l is the subgroup of permutations o such that A, = A; for
all 1 < ¢ < m. Then Qx(z) = 0 unless A is strict, and {Qx(z) | :
strict, £(A) < m} forms a Z-basis of I'y,. Also, Q ®z '), is generated
by pi(x) for K =1,3,5---, and hence spanned by {px(z)|A: odd }.

Let Aj be the associative algebra generated by 7’s (1 <@ < k —1)
satisfying the following relations:

P=-1, (1<i<k-1),

(3.13) TiTi1Ti = Tip1TiTiv1 (1 <i <k —2),
TiTj = —T5T; (lSi,jSk—l,li—j|>1).

Let §k C A be the group gencrated by —1 and 7; (1 <7 < k—1).

There exists a surjective homomorphism 7 : Sy — Sk given by (1) =

o; and w(—1) = 1 with kerm = {1,—1} which is central. Hence Sj
is a double cover of Sy and Ay is a twisted group algebra of S;. A



376 Jae-Hoon Kwon

representation of Ay corresponds to a projective representation of Sk,
which is also called a spin representation of Sk.

Set OP(k) ={ A€ P(k)|A:0odd} and 2P(k) ={ A€ P(k)|\:
strict }. Let 227 (k) (resp. 2 (k)) be the set of strict partitions of
k such that the number of even parts is even (resp. odd).

We consider Ay, as a Zo-graded algebra (or superalgebra) with deg(r;) =
1 (1 <i<k-—1). Then for each A € 22(k), there exists a Zo-graded
irreducible representation T of A, whose characters X-//\‘tk give all the
irreducible characters of A (see [15, 38] for a more detailed exposition).

For p= (g1, , pur) € P(k), set 7, = t1 - - - t, where

ti = Tpa+tpi_1+1 " Tpy+tpi—1

for 1 <4 <r. Since xf‘4k (u) = 0 unless p € 0Z(k), it suffices to know
X:\4k (1y) for p € 6FP(k), and it is given by the coefficient of Qx(z) in
the expansion of p,(z) (1 € 62(k)) into Schur Q-functions:

THEOREM 3.4 ([15, 30]). For each partition u € & 2 (k), we have

(314) p;z(x) _ Z (%)Z(M)+Z(A)+E(A)Xj\4k (Tﬂ)Q)\(ZE),
AED P (k)

where e(\) = (1 F 1)/2 if \ € 2P*(k).

REMARK 3.5. The above formula is originally due to Schur ([30]),
and our description of his result in the language of Zs-graded algebras
is due to [15]. In [33], Sergeev established a duality relation of the Lie
superalgebra q(n) and the twisted group algebra of the hyperoctahedral
group Hy. From this, we have a similar formula where the spin charac-
ters of Sy are replaced by the characters of the twisted group algebra of
Hj. The formula (3.14) can also be deduced from the duality relation
of q(n) and the twisted group algebra of Sy ([38]).

4, Multiplicities of irreducible representations in .%,

Let .Z be a Lie superalgebra. A Zy-graded vector space V is called
an .Z-module if there exists a bilinear map L x V — V, (z,v) — z - v
such that

(1) z-veVypforze Ly, veV, (a,be Zsy)
2) [z,y] - v=x-(y-v)— (=1)®y - (z-v) for z € &, and y € %
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Let V and W be Zs-graded vector spaces. Then V @ W is also a Zy-
graded vector space where (V ® W), = @y e Vo ® We. Moreover,
if they are .Z-modules, then V ® W becomes an .Z-module where the
action of .Z is given by

(4.1) z-(vew)=(z-v)@w+ (-1)®v @ (z - w),
where z € L, ve Vyandwe W.

4.1. Decomposition as a gl(m, n)-module

Suppose that V' is a Zs-graded vector space with Vo = C™ and V; =
cm.

Let gl(m, n) be the space of all (m +n) x (m +n) matrices. We may
view an element of gi(m,n) as an endomorphism of V. For a € Zs, set

(4.2) gl(m,n)y = { X € gl(m,n)| X(Vp) C Vyyp for b € Zs}.

Then gl(m,n) = gl(m,n)o ® gl{m,n); is a Zg-graded Lie superalgebra,
called the general linear Lie superalgebra, with the superbracket defined
by

(4.3) [(X,Y]= XY - (-1)*YX

for X € gl(m,n),. Y € gl{(m,n),, and a,b € Zs.

By left multiplication, V' becomes a gl(m,n)-module, which is called
the natural representation. For k > 1, V%% is a gl(m,n)-module with
the action given by

k
(44) X - (11®-Qug) = Z(_l)“(zj«%‘)vl R - ®(X v)® - Qup,
i=1
for X € gl(m,n), and v; € V,, (1 <i<k).

Let .Z be the free Lie superalgebra generated by V and .%) the kth
homogeneous component. Note that .%, is a subspace of V& and it is a
gl(m, n)-submodule of V¥* where the action of gl(m,n) is induced from
V%k:

X - ors [va, [+ [or—1, 08 -+ ]]

K
(4.5) _ Z(gl)a@]«“])[m,[m[X v o=, v -]

for X € gl(m,n), and v; € Vg, (1 <1i<k).

For k > 1, it is known that V®* is completely reducible as a gl(m, n)-
module and its irreducible components are parameterized by the (m,n)-
hook shaped partitions of k. For each (m,n)-hook shaped partition



378 Jae-Hoon Kwon

X of k, let VA be the corresponding irreducible representation. Let
z=(x1, " ,Zm) € (C)™ and y = (y1, -+ ,yn) € (C*)™ be variables.
The character of V', i.e. the trace of diag(z,y) on V?, is

(4.6) chV? = hsa(z,y),

where hsy(z,y) is the hook Schur function corresponding to A (see [4]
for the above arguments).
Note that chV® = p;(z,y)* = pary(z,y). From (3.7), we have

(4.7) chV® = ngk(l)hs,\(az,y),
)

where the sum is over all (m, n)-hook shaped partitions of k. Hence, the
multiplicity of V* in V®* is equal to ng(l).

THEOREM 4.1. For k > 1, let % be the kth homogeneous component
of the free Lie superalgebra generated by the natural representation V
of gl(m,n). As a gl(m,n)-module, %4, is completely reducible, and for
each (m,n)-hook shaped partition A of k, the multiplicity of V* in %,
is equal to

(4.8) S o)
dlk

Proof. Since %, is a gl(m,n)-submodule of V&% it is completely
reducible. In terms of characters, we have

(4.9) chy = ZmAhsA(:c, Y),
A

where the sum is over all (m, n)-hook shaped partitions of k, and m) is
the multiplicity of V?* in .%. On the other hand, we have

b= 1 3 wldpala ) by (2)

dlk
(4.10) = %Zu(d) <Z ng(a(dk/d))hsx(x,y)> by (3.7)
dlk Ak

= Z %Zu(d)xgk (O'(dk/d)) hs(z,y).

Ak dlk

Since { hsx(z,y) |\ : (m,n)-hook shaped } is linearly independent in
Q ®z A/n, we obtain the result by comparing (4.9) and (4.10). O
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Consider the action of Si on V®* given by
(4‘11) (m R vk) cO; = (—1)aiai+l(’l)1 Q- QU1 QU Q- ’Uk),

where v; € Vg, (1 < j < k). It defines a right Sg-module structure
on V¥ and commutes with the left action of gl(m,n). With these two
commuting actions, Berele and Regev established the Schur-Weyl dual-
ity ([4]). On the other hand, let Indg’;c 6 be the induced representation of
a faithful representation @ of a cyclic subgroup Cy of order k. Then, for
each (m,n)-hook shaped partition A of &, it is not difficult to see that
the multiplicity of the Specht module S* in Indg’;C 6 is equal to (4.8).
Therefore, from the Schur-Weyl duality, we have

(4.12) L =V ®¢ys, IndZk o,

as gl(m,n)-modules. When .Z is a free Lie algebra (or V; = 0), this was
given by Klyachko ([20]).

REMARK 4.2. In [19], the multiplicity m, is given in a recursive form
in terms of character values of the symmetric groups, and hence ex-
pressed in a rather complicated way. But in this paper, we express the
character of .Z% in terms of power super symmetric functions directly
(2), and use the Frobenius formula (3.7) to obtain a closed form of the
multiplicities. Some generalizations of the formula (1.2) using the theory
of symmetric functions can be found in [9, 14].

4.2. Decomposition as a q(n)-module

In this subsection, we assume that m = n, i.e. V = C* ® C". Let
g(n) be the Lie subsuperalgebra of gl(n,n) consisting of all matrices of

the form (g i) where A and B are n X n matrices. Then V is a

q(n)-module called the natural representation.

For k > 1, let us consider the k-fold tensor product of V. Then, as in
the case of gl(m,n), V¥F is completely reducible as a q(n)-module, and
its irreducible components are parameterized by 2.22(k).

For cach A € 22 (k), let U be the corresponding irreducible repre-
sentation. The character of U*, i.e. the trace of diag(z,z) (z € (C*)")
on U?, is given by

(4.13) chU* = (V216N (@),

where @ (z) is the Schur @Q-function corresponding to A and d(A\) =
(1 — (=1)fN)y/2 (see [33] for the above arguments).
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Note that the trace of diag(z,z) (z € (C*)") on V®* is equal to
2kpy (2)* = 2kp(1k)(x). From (3.14), we have

(4.14) Ppam@) = Y (V2FING (1)),

AED P (k)
which implies that the multiplicity of U* in V®* is (v/2)F—4(N)—e(N) X-rAAk (1).

THEOREM 4.3. For k > 1, let %} be the kth homogeneous component
of the free Lie superalgebra generated by the natural representation V
of q(n). As a q(n)-module, % is completely reducible, and for each
A€ 9P(k), the multiplicity of U in %, is equal to

(4.15) = Z d)xh, (T(geray) (V2) B/ D=dN=eN)

dlk
d:odd

Proof. Since % is a q(n)-submodule of V®%, it is completely re-
ducible. In terms of characters, we have

(4.16) cht= Y machU*,
AeDP(k)
where m,, is the multiplicity of U? in .%;.
On the other hand, we have

(4.17)
Chfk

= % > u(d)pa(z, z)k/

dlk

= Z d)2%/9py(z)*/? by (2.24)

d]k
d:odd

= % > w(d) ( > (VoW d)‘d(*)E(A)xﬁk(f(dk/d))chU*> by (3.14)

djk XD P (k)
d:odd

1
_ Z - Z (d)(v/2) K/ D=0 —£(X), A 3 (Taera) chU™.
AP P (k) dlk
d:odd
Since { @a(z) | X € 2(k)} is linearly independent in Q ®z I'y,, we
obtain the result by comparing (4.16) and (4.17). i
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5. Remarks on free Lie algebras

Suppose that V = C". Let £ be the free Lie algebra generated
by V. Let g = sp(n) (n : even) or so(n) be a subalgebra of gl(n).
For each A with £(\) < n, the irreducible gl(n)-module V* decomposes
into irreducible g-modules with the multiplicities given in terms of the
Littlewood-Richardson coefficients (see (5.3)). Hence, by (1.2), the mul-
tiplicity of each irreducible g-module in .%; is given in terms of the
character values of S, and the Littlewood-Richardson coeflicients.

In this section, we show that the multiplicity of each irreducible g-
module in % for 1 < k < n can be simplified in terms of the character
values of the Brauer algebras, which is analogous to (1.2).

5.1. Characters of the Brauer algebras

Fix f > 1. Consider two rows each of which consists of f vertices.
An f-diagram is a graph with the above 2f vertices and f edges where
each vertex belongs to exactly one edge. For example, the following is a
4-diagram.

Let z be an indeterminate. Given two f-diagrams d; and dy, we asso-
ciate an f-diagram d obtained by (i) placing da below d;, (ii) identifying
f vertices in the bottom row of dy with f vertices in the top row in ds.
Then we define dy1ds to be the d multiplied by z¢ where ¢ is the number
of cycles appearing in the middle row. For example, if

, then
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The Brauer algebra Dy(z) is an associative C(z)-algebra spanned by
all f-diagrams whose multiplication is described above. Note that the
multiplicative identity is an f-diagram consisting of exactly f vertical
edges. Then Dy(z) is a semisimple C(z)-algebra and the irreducible
representations of Dy (z) are indexed by Uy<y<(s /2 P (f —2k) (see [35]).

For d € Df(z) and d' € Dy(z), by a natural embedding of Dy(z) ®
Dyg(z) into Dyys(2), we may view d ® d’ as an element in Dy p(2).
Let e be a 2-diagram with 2 horizontal edges. For k > 2, let v, be the
k-diagram of the following form

and we set y; to be the identity in D;(z). Note that the symmetric group
Sy can be embedded into D¢(z) where o; (1 < i < f — 1) corresponds
to the element 'y®’ '@y ® 'yl ®f-i-1

For each partition g = (p1,- -, tr), let v = v, @ -+ - @ Yp,.. In [28],
Ram has shown that the characters of Df(z) are completely determined
by the values at ¢®" ® 7, where 2k + |u| = f, and computed the irre-
ducible characters of Df(2) in terms of the characters of the symmetric
groups:

THEOREM 5.1 ([28]). Let A € 22(f —2k) (0 < k < [f/2]), and ng(z)

the irreducible character of D¢(z) corresponding to A. For e®" @ v, (
2h + |p| = f), we have

(51) X)bf(z)(e®h ®fyﬂ) = Zh Z ( Z N;\jn)ng_gh (UN)7
vEf—2h nH2k—2h
n:even

where Ny, are the Littlewood-Richardson coeflicients given in (3.2).

REMARK 5.2. The formula (5.1) was obtained from the duality rela-
tion of the orthogonal groups and the Brauer algebras. Following the
same arguments in [28] by using the duality relation between the sym-
plectic groups and the Brauer algebras it is not difficult to see that

(5.2) X, (€*@7) = (DA ST (S NG (o).

vk f—2h n-2k—2h
n':even
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Both (5.1) and (5.2) will be used for our computations.
5.2. Decomposition as sp(n) and so(n)-modules

In this subsection, we assume that V7 = 0, and hence .Z is the free
Lie algebra generated by V = 1y = C". Suppose that g = sp(n) (n :
even) or so(n) C gl(n).

By restriction, .%; is a representation of g C gl(n). Note that V®F
decomposes into polynomial representations parameterized by the par-
titions p € Lk — 2i) (i = 0,---,[k/2]) satisfying £(u) < [n/2] (see
(32, 31, 36]). We denote by W# the corresponding representation. If
g = so(n) and £(u) = n/2 (n : even), then WH# is a sum of two irre-
ducible representations of the same dimension. Otherwise, W# is irre-
ducible. For each partition A with £(\) < n, let V* be the irreducible
polynomial representation of gl(n). When restricted to a representation
of g, it decomposes into W#’s and the multiplicity of W* in V? is given
by

53 S N 5= s0(0),

Zu’:even Nﬁ\l/ if g= ‘5p(n)’
(see [23]). Now, combining (5.1), (5.2) and (5.3), we can describe the
multiplicities of irreducible g-modules in Z%(k < n):

PROPOSITION 5.3. Fork > 1, let .%; be the kth homogeneous compo-
nent of the free Lie algebra generated by V.= C". Then .%. is completely
reducible as a g-module. And

(a) if g = so(n) and k < n, then for each p € Pk — 2i) (1 =
0.---,[k/2]) with £(u) < [n/2], the multiplicity of W* in %} is

1
(5.4) z Z ()X, () (Varray)-
dlk

(b) if g = sp(n) (n : even) and k < n, then for each p € P(k — 2i)
(t =0,---.[k/2]) with £(u) < n/2, the multiplicity of W# in %
is

1 ’ —(k
(5.5) % Z”(d)xlz)k(:)(V(dk/d))(—l)k (k/d)
dik

Proof. (a) As a gl(n)-module, we have % = @ xx (VA)®™ where
A <n

1
(5.6) my = Z ,u(d)xglc (o(gr/ay)-
d\k
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Since k < n, the condition ¢(A) < n in the decomposition of % is
sufficient. Hence, for each p € Z(k —2i) (i =0,---,[k/2]) with £(u) <
[n/2], the multiplicity of W* in %} is

Z ( Z NS") %Zﬂ(d)xgk (U(dk/d))

Ak v:.even d|k;

IS SO T Dol op Y FEXEI)

dlk Ak \vieven

1
== uld)xh (. (Yarray) by (5.1).
k o k(2)

(b) The proof for g = sp(n) is almost the same as in (a) except using
(5.2). O

REMARK 5.4. (1) Proposition 5.3 can be obtained directly by the
analogues of Frobenius formula (see Corollary 4.5 and Theorem 4.6 in
[28]).

(2) By (5.1) and (5.2), it follows that if u - k, then XllL?k(z) (V(grsay) in
(5.4) and (5.5) is equal to X’ék (0(gr/ay)-

(3) We would like to remark one more application of the Brauer al-
gebras to the decomposition of free Lie algebras. If Z is the free Lie
algebra generated by V®®(V*)®4, then as a gl(n)-module (dim V = n),
%, decomposes into rational irreducible representations, whose charac-
ters are given by rational Schur functions. In this case, a Frobenius
formula is given in [12], and by using (1.1), the multiplicities of irre-
ducible representations in %% can be expressed in terms of the character
values of a subalgebra D, 4(z) of Di(z) consisting of (p, ¢)-diagrams (cf.

[2])-
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