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RANK INEQUALITIES OVER SEMIRINGS

LERoY B. BEASLEY AND ALEXANDER E. GUTERMAN

ABSTRACT. Inequalities on the rank of the sum and the product of
two matrices over semirings are surveyed. Preferences are given to
the factor rank, row and column ranks, term rank, and zero-term
rank of matrices over antinegative semirings.

1. Introduction

During the past century a lot of literature has been devoted to in-
vestigations of semirings. Briefly, a semiring is essentially a ring where
only the zero element is required to have an additive inverse. Therefore,
all rings are also semirings. Moreover, among semirings there are such
combinatorially interesting systems as the Boolean algebra of subsets of
a finite set(with addition being union and multiplication being intersec-
tion), nonnegative integers and reals(with the usual arithmetic), fuzzy
scalars(with fuzzy arithmetic), etc. Matrix theory over semirings is an
object of much study in the last decades, see for example [9]. In particu-
lar, many authors have investigated various rank functions for matrices
over semirings and their properties, see [1, 3, 6, 7, 8, 12] and references
there in.

There are classical inequalities for the rank function p of sums and
products of matrices over fields, see, for example [10, 11]:

The rank-sum inequalities:

| n(A) — p(B) |< p(A+ B) < p(A) + p(B);
Sylvester’s laws:

p(A) + p(B) ~ n < p(AB) < min{p(4), o(B)}
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and the Frobenius inequality:
p(AB) + p(BC) < p(ABC) + p(B),

where A, B, C are real or complex conformal matrices.

These inequalities may or may not hold when § is not a field.

In the present paper we compare different rank functions for matrices
over semirings. For these rank functions we investigate the semiring
versions of the above mentioned classical inequalities for the sum and
product of matrices. Numerous examples are given to illustrate the
behaviour of rank functions under consideration. In particular, we show
that our bounds are exact and the best possible. Namely not only pairs
of matrices satisfying the case of equality are presented but for any given
r and s it is proved that there exist matrices A and B of ranks r and s
respectively such that the equality holds.

Our paper is organized as follows. In section 2 we collect all necessary
definitions and notations. In section 3 we compare different semiring
rank functions for a given matrix. In subsequent sections, we investigate
upper and lower bounds on these introduced rank functions for sums
and products of matrices: section 4 is devoted to factor rank, section 5
is devoted to term rank, section 6 is devoted to zero-term rank, and
section 7 is devoted to row and column rank functions.

2. Definitions and notations

DEFINITION 2.1. A semiring, S, consists of a nonempty set S and
two binary operations, addition and multiplication, such that:

e S is an Abelian monoid under addition(identity denoted by 0);
e S is a semigroup under multiplication(identity, if any, denoted by
1);
o multiplication is distributive over addition on both sides;
e s0=0s=0forallses.
In this paper we will always assume that there is a multiplicative identity
1in S.

DEFINITION 2.2. A semiring is called antinegative if no nonzero ele-
ment has an additive inverse.

DEFINITION 2.3. Let S be a set of subsets of a given set M contain-
ing the empty set and M, the sum of two subsets is their union, and
the product is their intersection. If S is closed under addition(unions)
and multiplication(intersections), M is a semiring. The zero element is
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the empty set and the identity element is the whole set M. We call
these types of semirings, or any semiring which is isomorphic to these,
Boolean semirings.

It is straightforward to see that a Boolean semiring is commutative
and antinegative. If S consists of only the empty subset and M, M # 0,
then it is called a binary Boolean semiring(or {0, 1}-semiring) and is
denoted by B.

DEFINITION 2.4. A semiring is called a chain semiring if the set S is
totally ordered with universal lower and upper bounds and the opera-
tions are defined by a + b = max{a,b} and a - b = min{a, b}.

Let My, »(S) denote the set of m X n matrices with entries from the
semiring §. Throughout we assume that m < n. The matrix I, is the
n X n identity matrix, Jp, 5 is the m X n matrix of all ones, Oy, ,, is the
m X n zero matrix. We omit the subscripts when the sizes of matrices is
obvious from the context, and we write I, J, and O, respectively. The
matrix £;;, called a cell, denotes the matrix with exactly one nonzero
entry, that being a one in the (i, j) entry. Let R; denote the matrix whose
it" row is all ones and is zero elsewhere, and Cj denote the matrix whose
jt column is all ones and is zero elsewhere. Let Uy denote the k x k
matrix of all ones above and on the main diagonal, L; denote k x k
strictly lower triangular matrix of ones. A line of matrix A is a row or
column of the matrix A. We denote by A® B the block-diagonal matrix

O B
commutative. We say that the matrix A dominates the matrix B if and
only if b; j # 0 implies that a; ; # 0, and we write A > B or B < A. If
A and B are (0, 1)-matrices and A > B we let A\ B denote the matrix

C where
o0 by =1
“ 7| a;; otherwise

of the form [ A0 } Note that in this sense the operation @ is not

Below we recall well-known rank concepts for matrices over semirings.
The detailed information on this subject can be found in [1, 2, 4, 8].

DEFINITION 2.5. The matrix A € My, o(S), A # O is said to be of
factor rank k (rank(A) = k) if k is the smallest positive integer such
that there exist matrices B € Mp, x(S) and C' € My ,(S) such that
A = BC'. The factor rank the zero matrix, O, shall be equal to 0.
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PROPOSITION 2.6. The factor rank of A is equal to the minimum
number of factor rank-1 matrices whose sum is A.

Proof. For rank(A) = k and A = BC, B € Mp,x(S) and C €
My n(S) we have A = 3% bic; where b’ denotes the " column of
B and c; denotes the i** row of C. Thus the factor rank of A is at
least the minimum number of factor rank-1 matrices whose sum is A. If
A=Y bic; where b® € My, 1(S) and ¢; € My ,(S) then A = BC

C1

C2
where B = [b!,b?%,--- |b]and C = | . |. Thus, the factor rank of A

c
is at most the minimum number of factor rank-1 matrices whose sum is
A. The proposition follows. 0

DEFINITION 2.7. A matrix A € M, »(S) is said to be of term rank k
(t(A) = k) if the minimum number of lines needed to include all nonzero
elements of A is equal to k.

Let us denote by t.(A) the least number of columns needed to include
all nonzero elements of A and by ¢,.(A) the least number of rows needed
to include all nonzero elements of A.

DEFINITION 2.8. A generalized diagonal of a matrix A € M, »(S)
is a set of min{m,n} entries of A such that no row or column contains
two of these entries.

PropPOSITION 2.9. [4, Theorem 1.2.1] The term rank of A is the
maximum number of nonzero entries in some generalized diagonal of A.

DEFINITION 2.10. The matrix A € My, (S) is said to be of zero-term
rank k(z(A) = k) if the minimum number of lines needed to include all
zero elements of A is equal to k.

A vector space is usually only defined over fields or division rings,
and modules are generalizations of vector spaces defined over rings. We
generalize the concept of vector spaces to semiring vector spaces defined
over arbitrary semirings.

DEFINITION 2.11. Given a semiring S, we define a semiring vector spa-
ce, V(S), to be a nonempty set with two operations, addition and scalar
multiplication such that V(S) is closed under addition and scalar mul-
tiplication, addition is associative and commutative, and such that for
alluand vin V(S) and r,s € S
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There exists a 0 such that 0 +v = v,
lv=v=vl,

rsv = r(sv),

(r+s)v=rv+sv,and

r(u+v) =ru+rv.

DEFINITION 2.12. A set of vectors, S, from a semiring vector space,
V(S) is called linearly independent if there is no vector in S that can
be expressed as a nontrivial linear combination of the others. The set is
linearly dependent if it is not independent.

Note that, unlike vectors over fields, there are several ways to define
independence, we will use the definition above.

DEFINITION 2.13. A collection, B, of linearly independent vectors is
said to be a basis of the semiring vector space V(S) if its linear span
is V(S). The dimension of V(S) is a minimal number of vectors in any
basis of V(S).

DEFINITION 2.14. The matrix A € M, ,(S) is said to be of row(resp.

column) rank k(r(A) = k) if the dimension of the linear span of the
rows(resp. columns) of A is equal to k.

DEFINITION 2.15. The matrix A € M, »(S) is said to be of spanning
row(resp. column) rank k(sr(A) = k) if the minimal number of rows(resp
columns) that span all rows (resp. columns) of A is k.

DEFINITION 2.16. The matrix A € My, »(S) is said to be of maximal
row(resp. column) rank k(mr(A) = k) if it has & linearly independent

rows(resp. columns) and any (k + 1) rows(resp. columns) are linearly
dependent.

3. Rank relations

If the semiring S is a subsemiring of a field F, let p(A) denote the
rank of the matrix A as an element of My, ,(F). If the semiring S
coincides with the field F, then, p(4) = rank(4) = r(A4) = ¢(4) =
sr(A) = sc(A) = mr(A) = mc(A). Note that p(A) is invariant of the
field chosen to contain §. Over more general semirings, the situation
is more complicated. Namely, the following inequalities are true for
matrices with entries from arbitrary semirings:

PROPOSITION 3.1. Let A € My, n(S) then
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. rank(A) < min{r(A4),c(A4)};

r(4) < sr(A) <mr(A);  ¢(4) < sc(A) < me(A);
rank(A) < t(A);
If S is a subsemiring of a field F then p(A) < rank(A).

P@NH

Proof. 1. See [3, Lemma 2.3].

2. Follows directly from the definitions.

3. Let A € My n(S). Suppose that the term rank of A is k. By
Konig’s Theorem, see [4, Chapter 1.2], there exist permutation matrices
P € Mpym(S) and @ € M, ,(S) such that

Ay A2 :l

PAQ =
Q [AS O(m—'r)x(n—s)

Where A]_ € M'r’s(S), A2 E MT,TL—S(S)7 A3 6 Mm—r,s(s), and 'f'+ s = k.
Now, define

I'r Orxs Al A2
[ O(m——r)xr Az :l an [ I Osx(n—s) il

Then PAQ = XY and for B = P!X and C = Y Q! we have A = BC,
and B € Mp, k(S), C € My, (S). Thus rank(A) < k = t(A).

4. Tt is well-known that the factorization of A into the product of
mxp(A) and p(A)xn matrices exists over F and there is no factorization
of A into the product of m x k and k x n matrices for £ < p(A). Thus
rank(A) > p(A) since S is a subsemiring of F. O

EXAMPLE 3.2.

1. Note that the inequality max{r(A),c¢(A4)} < t(A) does not hold
over any antinegative semiring S, since for

_O =

1

1
one has that r7(A4) = t(A) = 3, ¢(4) = 4.
2. The inequality min{r(A)

since for

/\
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3. The spanning column rank may actually exceed the column rank
over some semirings. For example, we consider A = (3 — VT,V7—
2) € M12(Z[V7]F). Thus sc(A) = 2 since 3 — V7 # (/7 — 2)
and a(3 — V7) # V7 — 2 in Z[V7]t. However, c(A) = 1 since
1= (3~ 7)+ (/7 — 2) generates the column space of 4, see [§]
for the details.

4. The maximal column rank may actually exceed the spanning col-
umn rank over some semirings. For example, we consider A =
(4 — V7,V7 —2,1) € My3(Z[V7)). Thus sc(A) = 1, since 1
spans all columns of A. However similar to the previous example
one can see that me(A) = 2.

REMARK 3.3. If S = B is a binary Boolean semiring then z(A4) =
t(J\ A) for all A € My, ,(S).

4. The factor rank

The inequalities for factor rank differ according to the type of arith-
metic within the semiring. Let us show that the standard lower bound
for the rank of sum of two matrices is not valid in general.

ExXAMPLE 4.1. Let § be a Boolean semiring. Then the inequality
rank(A + B) > |rank(A) — rank(B)| need not hold.

0111111
1011111
1101111
Let us consider A = K= |1 1 1 0 1 1 1| and B = Iy
1111011
1111101
1'111110]
then, 1 = rank(J;) = rank(4 + B) but over any Boolean semiring

rank(K7) < 5 due to the factorization

1 0 1 0 1]

11000 0011110

01011 1000011
K;=[01110 0110000

01101 1100100

00111 0001001

10110
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(see [5] for more details). Thus |rank(A) — rank(B)| = rank(B) —
rank(A) > 7—5=2> 1 =rank(4A+ B).

However, the following bounds are true.

PROPOSITION 4.2. Let S be an antinegative semiring, A, B € My, n(S).
Then

1. rank(A + B) < min{rank(A) + rank(B),m,n};

rank(4) if B=0
2. rank(A+ B) > ¢ rank(B) if A=0 .
1 if A#£0Oand B#O0

These bounds are exact, the upper bound is the best possible and the
lower bound is the best possible over Boolean semirings.

Proof. 1. By Proposition 2.6 we have the first inequality. To prove
that this bound is exact and the best possible, for each pair (r,s), 0 <
r,5 < n consider the matrices A, = I, ® O,,_, and By = Op—s & I5 in
the case m = n. It is routine to generalize the above example to the
case m # n.

2. Since A+ B = O if and only if both A = O and B = O, we
have rank(A + B) > 1 unless A = B = O, and clearly if A = O,
rank(A + B) = rank(B) and the second inequality is established. For
the exactness in the second inequality, let A = B = Ey,;. To show that
this bound is the best possible, consider the following family of matrices:
for each pair (r,s), 0 < r,s < m consider the matrices

_ U Jr,n—r
AT B [ Jm—r,r Jm—r,n—r :|

and
Bs _ [ Js,n—s Ls + 1 :| )
Jm—s,n—s Jm—s,s
Then rank(A,) = r, rank(B;) = s and over Boolean semirings rank(A, +
B;) =1 since over Boolean semirings A, + Bs = Jy . O

Let us see that the lower bound for the factor rank of a product of
two matrices is not parallel to Sylvester’s lower inequality.

EXAMPLE 4.3. Let S be a Boolean semiring,

100 -~ 0]
110 --- 0

A=|(1 01

100 --- 1
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and B = A!, then rank(A) = rank(B) = n and rank(AB) = 1 %
rank(A) + rank(B) — n = n since AB = J.
The parallel proposition for the Sylvester inequalities is:
PROPOSITION 4.4. Let S be an antinegative semiring, A € M n(S)
and B € My, .(S). Then
1. rank(AB) < min{rank(A), rank(B)},
2. Assume S has no zero divisors, then
0 if rank(A)+rank(B)<n
1 if rank(A)+rank(B)>n °
These bounds are exact, the upper bound is the best possible and the

lower bound is the best possible over Boolean semirings that have no
sero divisors.

rank(AB) > {

Proof. 1. The first inequality is verified as if the semiring were a field.

2. To prove the second part, let us note that if rank(A)+rank(B) < n
it is possible that AB = O, for example if A = F1; and B= 0,6 X
for any matrix X € My_1,_1(S). However, if rank(A4) + rank(B) > n,
AB # O. To see this, suppose that AB = O, then for some permutation
matrix Q, AQ = [A1|O] where A; has k columns and Q!B = [ BOl }
where B; has at most n — k rows, since there are no zero divisors in
S. But then, rank(A) + rank(B) < k+ (n — k) < n, a contradiction.
For exactness one can take matrices from Example 4.3. In the case
m = n = k in order to show that this bound is the best possible we
consider the family of matrices

L Opn—
Ar — r -7
[ Jn—r,r On—r,n—r :I

and
Us Jsn—s
B, = :
i I: On—s,s On——s,n—s
for each pair (r,s), 0 <r,s <n. Then rank(4,) = r, rank(B;) = s and
rank(A,Bs) = 1if ;s # 0. It is routine to generalize the above example
to the case m # n # k. O

EXAMPLE 4.5. The triple (4, I, At), where A is as in Example 4.3,
provides a counterexample to Frobenius inequality in the Boolean case.

If S is a subsemiring of R', the positive real numbers, better bounds
can be found. However the standard lower bound for the rank of sum
of two matrices is not valid in this case either.
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EXAMPLE 4.6. Let S be a subsemiring of ®*. Then the inequality
rank(A + B) > |rank(A) — rank(B)| need not hold.
Let r,s > 4 and s < n — 4. Let us consider

1 2 3 4
, 1111
A= 1010
0 0 2 2
and
0 00O
, loooo
B = 01 01
0101
Note that rank(A’) = 4, p(A’) = 3, rank(B’) = p(B’) = 1 and rank(A’ +

B) = p(A' + B') = 2.

Let
A O4,r—4 O4,n—r
A= Or—4,4 L4+ T4 Or—4,n—’r
0m—'r,4 Om—'r,r—4 Om—r,n—r
and
B Ou,1 O4,5-1 Otn—s—4
B = 03—1,4 Os—l,l Us—l Os—l,n—s—4

Om—s—3,4 Om—s—3,1 Om—s—3,s—1 Om—s—3,n—s—4
Here we have that rank(A4) = r, p(A) = r — 1, rank(B) = p(B) = s
and rank(A+ B) =|r—s| -1 < |rank(A)—rank(B) |ifSisa
subsemiring of RT. Note if 7 = s + 3, reversing the roles of A’ and B’
in A and B also gives the corresponding example.

PROPOSITION 4.7. Let S C R*, A, B € M n(S). Then
1. rank(A + B) < min{rank(A) + rank(B), m, n},
2. rank(A + B) > |p(A) — p(B)|.

These bounds are exact and the best possible.

Proof. 1. By Proposition 4.2 we have the first inequality.
2. By Proposition 3.1.4 the second inequality follows. For the exactness
one can take A = Ey 1+ E12+FE3 1, B= E33. Inorder to prove that this
bound is the best possible for each pair (r,s), 0 < r,s < m we consider
the family of matrices

A’r — Lr + I Or,n——r

Om—r,r Om—r,n—r
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and
0 Us Os,n—s
0 Om—s,s Om—s,n—s

Then rank(A,) = r = p(A,), rank(B;) = s = p(Bs) and rank(A,+ Bs) =
|s—1 | O

B, =

In the following example we see that the standard lower bounds for
the Sylvester and Frobenius inequalities also are not valid in the case
S CR*.

0 1 11
. . 1011
EXAMPLE 4.8. Let S = R7 and let us consider A = 110 4
1140
1100
1100
and B = 00 1 1 , then p(4) = 3, rank(4) = 4, p(B) =
0 0 1 1
11 2 2
11 2 2
rank(B) = 2 and AB = 9 9 4 4 | % rank(AB) = 1. Thus,
2 2 4 4

1 =rank(AB) # rank(A) +rank(B)—-n=442—-4=2and 6 =442 =
rank(A7) + rank(IB) £ rank(AIB) +rank(/) =1+ 4 = 5.

However the multiplicative upper bounds and the following general-
izations of lower bounds are true.

PROPOSITION 4.9. Let S C RT, A € My n(S), B € M, 1(S). Then
1. rank(AB) < min{rank(A), rank(B)},
0 if p(A)+p(B)<n,
. > . .
2. rank(45) = { p(A) +p(B)—n if p(A)+p(B)>n
These bounds are exact and the best possible.

Proof. 1. The justification for the upper bounds is the same as if the
semiring were a feld.

2. The lower bounds are the bounds for any real matrices by Proposi-
tion 3.1.4. For the exactness in both cases one can take A = E{1,B = 1.
For the proof that lower bound is the best possible we consider

Ir Or,n—r

A=
On—r,r On—'r,n—r
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and
On—s,n—s On—s,s
Os,n—s Is

for each pair (r,s), 0 < r, s < ninthe case m = n = k. Then rank(4,) =
r, rank(B;) = s, rank(A,B,) = 0if r+s < n, and rank(4,B;s) = r+s—n
if r +s > n. It is routine to generalize the above example to the case

m#n#k. O

PROPOSITION 4.10. Let S C RT, A € Mun(S), B € Mpi(S), and
C € My, (S). Then

p(AB) + p(BC) < rank(ABC) + rank(B).

B =

This bound is exact and the best possible.

Proof. We have p(AB) + p(BC) < p(ABC) + p(B) by Frobenius’
inequality, and p(ABC)+p(B) < rank(ABC)+rank(B) since rank(X) >
p(X) for all nonnegative real matrices A by Proposition 3.1.4. For the
exactness take A = B = C = E;,;. To prove that this bound is the
best possible we consider the following family of matrices: in the case
m =n =k = for given r, s let us take

I, Or,n—r . I Os,n—s
AT_[O }, CS_[O ],and

n—r,r On—r,n—r n—s,8 On—s,n——s

Iy Otn—t
B, = ’
® [ On—tt On—tn—t

where ¢ is the greatest integer less than % Then, if r < s, p(A;Brs) +
p(BrsCs) = r +t = rank(A,B,sCs) + rank(By;) and if s < r then
p(ArBys)+p(BrsCs) = s+t = rank(A, By sC,)+rank(By ). It is routine
to generalize the above example to the case m #n # k, n # [. O

5. The term rank

The following inequalities are true for the term rank:

PROPOSITION 5.1. Let S be an arbitrary antinegative semiring. For
any matrices A, B € My, ,(S) we have:

t(A+ B) < min{t(A4) + t(B), m,n}.

This bound is exact and the best possible.
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Proof. This inequality follows directly from the definition of term
rank. The substitution A, = I, ® On—p, Bs = On—s & I, for each pair
(r,s), 0 < r,s <nshows that this bound is exact and the best possible
in the case m = n. It is routine to generalize this example to the case
m# n. O

ExAMPLE 5.2. A nontrivial additive lower bound for the term rank
of a sum does not hold over an arbitrary semiring. It is enough to take
A = B = Jpn over a fleld whose characteristics is equal to 2. Then
t(A+ B) =t(0) = 0.

However for antinegative semirings there is a lower bound for the
term rank of a sum which is better than the one for fields or arbitrary
semirings. Namely, the following is true.

ProPOSITION 5.3. Let § be an antinegative semiring. For any ma-
trices A, B € My n(S) the following inequality holds:

t(A + B) > max{t(A),t(B)}.
This bound is exact and the best possible.

Proof. This inequality follows from the antinegativity of S, i.e., a+b #
0 for any a,b € 8, a # 0, and the definition of the term rank. To prove
that this bound is exact and the best possible we consider the matrices
Ay =1, ® 0y, By = I3 ® Op_s for each pair (r,s), 0 < 7r,s < nin
the case m = n. It is routine to generalize this example to the case
m # n. O

EXAMPLE 5.4. A nontrivial multiplicative lower bound does not hold
over an arbitrary semiring. It is enough to take A = B = J,, over a field
whose characteristic is a divisor of n. Then t(AB) = t(nJ,) = 0.

Over an antinegative semiring the Sylvester lower bound holds:

ProPOSITION 5.5. Let S be an antinegative semiring without zero
divisors. Then for any A € Mpun(S), B € M, x(S) the following
inequality holds:

0 if t(4)+t(B)<n,
>
HAB) 2 { HA)+4(B)—n if t(A)+i(B)>n.
This bound is exact and the best possible.

Proof. Let A € Mua(S), B € Mypi(S) be arbitrary matrices,
t(A) = ty, t(B) = tg. Then A and B have generalized diagonals with
t4 and tp nonzero elements, respectively. Denote them by D4 and Dy,
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respectively. Then AB > DsDp since S is antinegative. Since the
product of two generalized diagonal matrices, which have t4 and ¢
nonzero entries, respectively, has at least t4 + g — n nonzero entries,
the inequality follows.

In order to show that this bound is exact and the best possible for
each pair (r,5), 0<r,s <nlet ustake A, = L, ®Op_,, Bs = Op_s B I,
in the case m = n. It is routine to generalize this example to the case
m # n. O

EXAMPLE 5.6. The inequality ¢t(AB) < min(t(A),t(B)) does not
hold. It is enough to take A = Cy;, B = R;. Then t(4AB) =t(J,) =n >
1.

However the following inequality is true

PROPOSITION 5.7. Let S be an antinegative semiring. Then for any
A€ M n(S), B € My, 1x(S) the inequality t(AB) < min(t,(A),t.(B))
holds. This is exact and the best possible bound.

Proof. This inequality is a direct consequence of the definition of the
term rank and antinegativity. The exactness follows from Example 5.6.
In order to prove that this bound is the best possible, for each pair
(r,s), 0 <r <m, 0 < s <k, consider the family of matrices A, =
Evi+...+Eand Bs=Fi1+ ...+ B O

EXAMPLE 5.8. For an arbitrary semiring, the triple (Cj, R1,0) is a
counterexample to the term rank version of the Frobenius inequality,
since t(C1R1) + t(R10) = n > t(C1R10) + t(R1) = 1. However if S is a
subsemiring of 1 the following obvious version is true:

p(AB) + p(BC) < t(ABC) + t(B)

6. Zero-term rank

PROPOSITION 6.1. Let S be an antinegative semiring. For A, B €
M, n(S) one has that
0 < z(A+ B) < min{2(A), 2(B)}
These bounds are exact and the best possible.

Proof. The lower bound follows from the definition of the zero-term
rank function.

In order to check that this is exact and the best possible for each
pair (r,s), 0 < r,s < min{m,n} let us consider the family of matrices
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T 8
= J\ (Z Eii), By = J\ (X, Eii41) if s < min{m,n} and Bs; =
i=1
VAN lEz 41+ Es1) if s = min{m,n}. Then z(A4,) = r,z(Bs) = s
by definition and z(A, + Bs) = 0 by antinegativity.

The upper bound follows directly from the definition of zero-term
rank and from the antinegativity of S. For the proof of its exactness let
us take A = J and B = 0. In order to check that this bound is the best
possible we consider the following family of matrices: for each pair (r, s),
0 < r,s < min{m,n} let us consider the matrices 4, = J \ (3i—; Ei.)
and B, = J\ (0.7 Eii). O

PROPOSITION 6.2. Let S be an antinegative semiring withour zero
divisors. For A € My, n(S), B € My (S) one has that

0 < z(AB) < min{z(4) + z(B), k,m}
These bounds are exact and the best possible for n > 2.

Proof. The lower bound follows from the definition of the zero-term
rank function. In order to show that this bound is exact and the best
possible let us consider the family of matrices: for each pair (r,s), 0 <
r < min{m,n}, 0 < s < min{k,n}, we take A, = J\ Qi1 Eii)s

By = J\ (3%, Eiis1) if s < min{k,n} and Bs = J \ (02{2] Eia1 +

E,1) if s = min{k,n}. Then z(4,) = r,2(Bs) = s by definition and if
n > 2 then A, B, does not have zero elements by antinegativity. Thus
2(A,Bs) = 0.

The upper bound follows directly from the definition of zero-term
rank and from the antinegativity of S.

In order to show that this bound is exact and the best possible let us
consider the family of matrices: for each pair (r,s), 0 <7 < mm{m n},

0 < s < min{k,n}, we take A, = J \ ( ZRz )and By = J\ ( ZC a
=1

ExAMPLE 6.3. The triple (Cy, I, R1) is a counterexample to the zero-
term rank version of the Frobenius inequality, since 2(C1) + 2(R1) =

2n — 2> 2(ChRy) + 2(I) =n for n > 2.
7. Row and column ranks

The standard upper bound in the additive inequalities is not valid
for row and column ranks.
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ExaMPLE 7.1. Consider

1 00 0 2 2
010 0 20
A=]1 10|, B=|0o0 2
1 00 0 6 2
010 0 4 6
Then it is easy to see that r(A) = r(B) = sr(4) = sr(B) = mr(4) =

mr(B) = 2. However,

r(A+B)=r =5=sr(A+ B)=mr(A+ B)

O = O
GO = W N
SN O N

over Z7T.

PROPOSITION 7.2. Let S be an antinegative semiring. Then for 0 #
A, B € My, »(S) one has that

1<c¢(A+ B),r(A+ B),sr(A+ B),sc(A+ B),mr(A+ B),mc(A+ B)

These bounds are exact over any antinegative semiring and the best
possible over Boolean semirings.

Proof. These inequalities follow directly from the definition of these
rank functions and the condition that A, B # 0. For the exactness
one can take A = B = Fy;. Let S be a Boolean semiring. For each

r
pair (r,s), 0 < r;s < m we consider the matrices 4, = J\ (> Ei;),
i=1

By = J\(X. Bign1) if s < mand By = J\ (X35} Byier) + oy if s = m.
Then =
c(Ar) = 1(Ar) = sr(Ar) = sc(Ar) = mr(Ay) = me(4y) =1,
¢(Bs) = 1(Bs) = sr(Bs) = sc(Bs) = mr(Bs) =mc(Bs) = s

by definition and A, + Bs; = J has row and column ranks equal to 1.
Thus, these bounds are the best possible over Boolean semirings. i

PROPOSITION 7.3. Let S be a subsemiring in R*. Then for A,B €
M, (S) one has that
¢(A+ B), r(A+ B), sr(A+ B), sc(A+ B),
mr(A+ B), mc(A+ B) > |p(A) — p(B)



Rank inequalities over semirings 239

These bounds are exact and the best possible.

Proof. These inequalities follow directly from the fact that p(X) <
m(X),c(X) for all X € My, ,(R"), Proposition 3.1.2, and corresponding
inequalities for matrices with coefficients from the field R. For the proof
of exactness consider matrices A = Fi1 + ...+ Fp_1n-1, B = J\
A. In order to show that these bounds are the best possible one can
take the family of matrices A,, Bs that show that the lower bound in
Proposition 4.7 is the best possible. O

PrROPOSITION 7.4. Let § be an antinegative semiring without zero
divisors. For 0 # A € Mma(S), 0# B € My k(S) and c(A)+7(B) > n,
one has that

1< ¢(AB),r(AB),sr(AB),sc(AB), mr(AB), mc(AB)

These bounds are exact over any antinegative semiring without zero
divisors and the best possible over Boolean semirings without zero divi-
sors.

Proof. For an arbitrary antinegative semiring, if ¢(A) = ¢ and r(B) =
j then A has at least i nonzero columns while B has at least 7 nonzero
rows. Thus, ifi+j > n, AB # O and hence these bounds are established.
For the proof of exactness let us take A = B = E} ;.

Let S be a semiring with Boolean arithmetic and without zero divi-

sors. In the case m = n = k for each pair (r,s), 1 < r,s < n let us
r m S

consider the matrices A, = Z Ei;+ Z E;1, Bs = Z Ei; + Xn: Ey ;.
Then i=1 i=1 i=1 i=1
c(Ar) =r(A) = sr(4;) = sc(4Ay) = mr(4;) = mc(4,) =1,
c(Bs) = r(Bs) = s1(Bs) = sc(Bg) = mT(Bs) =mec(Bs) = s
by definition and A,Bs = J. Thus ¢(A4,Bs) = (A, B;) = sr(A,B;) =

sc(ArBs) = mr(A,Bs) = me(A,Bs) = 1. It is routine to generalize this
example to the case m # n # k. il

Note that the condition that ¢(A) + r(B) > n is necessary because
for A=1;®0 and B = O @ I; we have AB = O whenever k + j < n.

PROPOSITION 7.5. Let S be a subsemiring in ®". Then for A €
Mpn(S) B € My 1 (S) one has that
0 if p(A)+p(B)<n,

c(AB), sc(AB), mc(AB), S { <
r(AB),sr(AB),mr(AB) = | p(A)+p(B)—n if p(A)+p(B)>n

These bounds are exact and the best possible.
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Proof. These inequalities follow directly from the fact that p(X) <
r(X),c(X) for all X € My, ,,(R), Proposition 3.1.2, and correspond-
ing inequalities for matrices with coefficients from the field . For the
exactness one can take A = B = I. In order to show that these bounds
are the best possible one can take the family of matrices A,, Bs that
show that the lower bound in Proposition 4.9 is the best possible. [

The following example, given in [8] for the spanning column rank,
shows that standard analogs for upper bound of the rank of product of
two matrices do not work for row and column ranks.

1 11

EXAMPLE 7.6. Let A = (3,7,7) € My3(Z*), B= {0 1 1
0 01
)

Then ¢(A) = sc(A) = mc(4) = 2, ¢(B) = sc¢(B) = me(B) = 3, and
¢(AB) = ¢(3,10,17) = sc(AB) = mc(AB) = 3.

However, the following upper bounds are true due to (8].

PROPOSITION 7.7. Let S be an antinegative semiring. For A €
Mpmn(S), B € My, k(S), one has that

¢(AB) < ¢(B), sc(AB) < sc(B), mc(AB) < mc(B),
r(AB) < r(A),sr(AB) < sr(A),mr(AB) < mr(A)
These bounds are exact and the best possible.

Proof. The inequality sc(AB) < sc¢(B) is proved in [8, Formula 2.4].
The other inequalities can be proved in essentially the same way. For
the proof that these bounds are exact and the best possible, consider
A, = I, & Op—r and By, = I; ® Op—; for each pair r,s, 1 < r,s < n

in the case m = n. It is routine to generalize this example to the case
m# n. O

ExXAMPLE 7.8. The triple (A, I, B), where A and B are from Proposi-
tion 7.4 is a counterexample to the corresponding Frobenius inequalities
if 7 and s are chosen such that r +s > n + 1.

The authors would like to thank Professor Seok-Zun Song for pointing
our several errors in an earlier version.
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