Influence of Thermal Aging on the Properties of EPDM/Silicone Rubber Blends

열노화가 EPDM/실리콘 고무 블렌드의 물성에 미치는 영향

  • Chung Yu-Kyoung (Reliability Assessment Center, Korea Research Institute of Chemical Technology) ;
  • Lee Sung-Goo (Reliability Assessment Center, Korea Research Institute of Chemical Technology) ;
  • Cho Bong Rae (Department of Chemistry, Korea University) ;
  • Choi Kil-Yeong (Reliability Assessment Center, Korea Research Institute of Chemical Technology)
  • 정유경 (한국화학연구원 신뢰성평가센터) ;
  • 이성구 (한국화학연구원 신뢰성평가센터) ;
  • 조봉래 (고려대학교 화학과) ;
  • 최길영 (한국화학연구원 신뢰성평가센터)
  • Published : 2005.03.01

Abstract

EPDM (ethylene propylene diene monomer)/silicone rubber blends were prepared and the influence of a compatibilizer and thermal aging on the properties of the blends was investigated. The blends of which the compositions were varied in the range of 90/10 through $10/90\;wt\%$ were melt mixed by using a Brabender Plasticoder (internal mixer) and were vulcanized by a hot press. The morphology of the vulcanized EPDM/SR blends was examined by scanning electron microscopy (SEM). After the thermal Aging for 24, 48, 96 hrs at $100^{\circ}C$ in an air oven, hardness, tensile strength, elongation and contact angle of the blends were investigated. From the result of the morphology, it was confirmed that the domain size of the blends containing the compatibilizer was reduced. As the increase of the thermal aging time, hardness and tensile strength of the blends decreased but elongation and contact angle increased.

EPDM(ethylene propylene diene monomer)1실리콘 고무 블렌드를 제조하고, 상용화제와 열노화 시간에 따른 물성 변화를 살펴보았다. EPDM과 실리콘 고무(SR)의 조성비는 90/10에서 $10/90\;wt\%$ 사이로 조절하였으며, Brabender사의 Plasticoder를 사용하여 용융 혼합하고, 열프레스로 가교하였다. 가교된 EPDM/SR 블렌드의 모폴로지를 주사전자현미경으로 관찰하였다. 또한, 블렌드를 $100^{\circ}C$에서 24, 48, 96시간 동안 열노화시켜 경도, 인장 강도, 신장률 및 접촉각을 측정하였다. 모폴로지를 조사한 결과 상용화제를 첨가한 블렌드의 분산상의 크기가 감소하였다. 열노화 시간이 증가함에 따라, 블렌드의 경도와 인장 강도는 감소하였으며, 신장률과 접촉각은 증가하였다.

Keywords

References

  1. M. I. Aranguren, Polymer, 39, 4897 (1998)
  2. S. L. Abd-El-Messieh, S. El-Sabbagh, and I. F. Abadir, J. Appl. Polym. Sci., 73, 1509 (1999)
  3. R. S. Gorur, J. Mishra, R. Tay, and R. McAfee, IEEE T. Dielect. El. In., 3, 299 (1996)
  4. R. S. Gorur, E. A. Cherney, R. Hackam, and T. Orbeck, IEEE T. Power Deliver., 3, 1157 (1988)
  5. S. Kole, S. Roy, and A. K. Bhowmick, Polymer, 36, 3273 (1995)
  6. J. Konar, S. Kole, N. Avasthi, and A. K. Bhowmick, J. Appl. Polym. Sci., 61, 501 (1996)
  7. S. Kole, A. Bhattacharya, D. K. Tripathy, and A. K. Bhowmick, J. Appl. Polym. Sci., 48, 529 (1993)
  8. J. K. Kim and H. K. Lee, Polymer(Korea), 25, 406 (2001)
  9. D. W. Kang, B. J. Kim, and D. S. Shim, J. Korean Ind. and Eng. Chem., 12, 277 (2001)
  10. M. R. Kamal, Polym. Eng. Sci., 14, 231 (1974)
  11. M. R. Kamal and M. E. Ryan, Polym. Eng. Sci., 20, 859 (1980)
  12. S. G. Lee, J. H. Lee, K. Y. Choi, and J. M. Rhee, Polymer(Korea), 22, 258 (1998)
  13. S. Kole, R. Santra, and A. K. Bhowmick, Rubber Chem. Tech., 67, 119 (1994)
  14. A. K. Bhowmick, J. Konar, S. Kole, and S. Narayanan, J. Appl. Polym. Sci., 57, 631 (1995)