Development of a Chain Conveyor Type Row-Spacing System for Plant Factory

식물공장용 체인 컨베이어식 작물 조간 조절장치 개발

  • Chang Yu Seob (National Institute of Agricultural Engineering Institute of Rural Development Administriation) ;
  • Song Hyun Gap (21 Substitute energy Institute) ;
  • Kim Dong Eok (National Institute of Agricultural Engineering Institute of Rural Development Administriation)
  • Published : 2005.03.01

Abstract

This study was conducted to develop a chain conveyor-type, row-spacing system for a plant factory. The developed system was evaluated for its practical use in growing plants. Results are intended to provide technical suggestions on the row spacing for hydroponically grown vegetables in a plant factory. The designed row-spacing system for a plant factory could be adjusted by four stages with a conveying speed range of $5.3\~15.8cm{\cdot}s^{-1}$ and with a row-space range of 10-25cm. The torque of driving shaft was measured with a torque range of 11.7-33.3 N$\cdot$m according as a trough weight changes with a range of $17\~935$ N. A measured value was $5.9\~9.8\;N{\cdot}m$ lower than a theoretical value. Travel reduction rate was shown up $1.6\~1.9\%$. The conveying time of trough was shown up 2.24 seconds in case that the designed value was 2.26 seconds. The system was evaluated to be functioning effectively according to the initial design factors in the test.

본 연구는 식물공장용 체인컨베이어식 조간조절장치를 개발하기 위해 수행하였다. 개발 시스템을 재배작물에 실제로 적용하기 위해 평가 시험하였다. 실험결과, 식물공장에서 수경재배되는 채소의 주간을 조절하는 기술을 제공하였다 작물조간조절단계는 매주 수확하는 것으로 하여 4단으로 설정하였고, 단계별 이송속도는 각각 6.4, 9.6, 12.3, 15.8$cm{\cdot}s^{-1}$이었고, 조간조절량은 각각 101.6, 152.4, 203.2, 254.0mm로 나타났다. 1단계에서 4단계로 작물이 이송되는 동안 작물과 재배 홈통의 무게가 17N에서 935N으로 증가함에 따라 구동축토오크도 $11.7\~33.3N{\cdot}m$범위에서 증가하여 이론토크 값보다 $5.9\~9.8N{\cdot}m$ 더 소요되었으며, 이때의 진행 저하율은 $1.6\~2.1\%$이었다. 재배홈통의 이동소요 시간의 설계 값이 2.26초이고 실측값이 2.24초로 잘 일치한 것으로 나타났다. 조간조절장치는 조간조절량이 설계된 값의 $5%$이내 범주에서 잘 조절되고, 시스템으로도 안정적으로 나타나 식물공장용 조간조절장치로 체인컨베이어식 조간조절장치가 활용될 수 있을 것으로 판단되었다.

Keywords

References

  1. Benoit, F. and N. Ceustermans. 1994. First findings with the continuous NFT-HEAD lettuce production system in small plastic pots. In: The International Seminar Proceedings Part II; Hydroponics Society of Japan. p. 14-24
  2. Benoit, F. 1997. The Mobil Gully System (MGS) for leafy vegetables and herbs. In: Technical communications. Belgium: European Vegetable R&D Centre, February 1997. p.4
  3. Park, M. H. and Y. B. Lee. 1999. Effects of Light Intensity and Nutrient Level on Growth and Quality of Leaf Lettuce in a Plant Factory. J. Bio-Environment Control 8(2):108-114
  4. Tadashi Takaura. 1996. State-of-the-art factory-style plant production systems. In: Practical plant factories toward the 21st century. Korea: Korean Society for Bio-Environment Control. p.3-10
  5. Takatsuji Masamoto. 1987. System of Plant Factory. 1st ed., Japan: CMC Co. p.290 (in Japanese)
  6. Takatsuji Masamoto. 1997. Handbook of plant factory. 1st ed., Japan: Tokai University Press. p. 3-9 (in Japanese)
  7. Van Henten, E. J. and G. Van Straten. 1994. Sensitivity analysis of dynamic growth model of lettuce. J. Agric. Engng. Res. 59: 19-31 https://doi.org/10.1006/jaer.1994.1061