DOI QR코드

DOI QR Code

Optimization of Microbial Cell-Based Spectrometric Assay for the Analysis of Epoxide Hydrolase Activity

미생물 세포 기반의 에폭사이드 가수분해효소 활성 측정을 위한 분광학적 분석법 최적화

  • Kim Hee Sook (Department of Food Science & Technology, Kyungsung University) ;
  • Lee Eun Yeol (Department of Food Science & Technology, Kyungsung University)
  • Published : 2005.02.01

Abstract

Microbial cell-based UV spectrometric assay for the quantitative measurement of epoxide hydrolase activity was evaluated and optimized for the efficient screening of whole cell activity of novel epoxide hydrolase. Epoxide hydrolase activity was determined by measuring the increase of the oxidized product, benzaldehyde. The effects of the concentrations of phenyl-1,2-ethanediol, sodium metaperiodate and cells were optimized for epoxide hydrolase-catalyzed hydrolysis of styrene oxide. The relevant kinetic parameters of Km and $V_{max}$ for the hydrolysis of (R)-styrene oxide by Rhodotorula glutinis were determined from Lineweaver-Burk plot as 41.2 nmol/min$\cdot$mg dcw and 7.5 mM respectively, and coincided well with those from GC analysis.

다양한 라세믹 에폭사이드 기질에 대한 입체선택적 가수분해 반응을 촉매하는 epoxide hydrolase 활성을 측정할 수 있는 미생물 세포 기반의 자외선 활성 분석법을 최적화하였다. 2.5 mg/ml의 세포 농도에서도 비교적 쉽게 흡광도 변화량을 인식할 수 있는 흡광도 범위인 0.5 이상을 얻을 수 있고, 반응 동력학 분석에도 응용할 수 있었다. 기존의 GC, HPLC 분석 법 보다 분석 시간을 줄일 수 있으며, 효소를 별도로 분리$\cdot$정제하지 않고 미생물 세포 자체의 epoxide hydrolase활성 분석이 가능하므로 상업적 특성이 우수한 epoxide hydrolase을 가진 미생물을 효율적으로 선별하는데 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides. Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
  2. Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Tech. 12, 225-228 https://doi.org/10.1023/A:1008825508904
  3. Choi, W. J., E. Y. Lee, S. J. Yoon, and C. Y. Choi. 1999. Biocatalytic production of chiral epichlorohydrin in organic solvent. J. Biosci. Bioeng. 88, 339-341 https://doi.org/10.1016/S1389-1723(00)80022-5
  4. de Vries, E. J. and D. B. Janssen. 2003. Biocatalytic conversion of epoxides. Current Opinion Biotechnol. 14, 414-420 https://doi.org/10.1016/S0958-1669(03)00102-2
  5. Doderer, K., S. Lutz-Wahl, B. Hauer and R. D. Schmid. 2003. Spectrophotometric assay for epoxide hydrolase activity toward any epoxide. Anal. Biochem. 321, 131-134 https://doi.org/10.1016/S0003-2697(03)00399-3
  6. Kim, H. S., J. H. Lee, S. Park and E. Y. Lee. 2004. Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodo torula glutinis. Biotechnol. Biopro. Eng. 9, 62-64 https://doi.org/10.1007/BF02949324
  7. Lee, E. Y. 2002. Epoxide hydrolase-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides. Kor. J. Biotechnol. Bioeng. 17, 321-325
  8. Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh and S. Park. 2004. Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microbial Technol. 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
  9. Lee, J. W., E. J. Lee, S. S. Yoo, S. H. Park, H. S. Kim and E. Y. Lee. 2003. Enantioselective hydrolysis of racemic styrene oxide by epoxide hydrolase of Rhodosporidium kraiochvilovae SYU-08. Biotechnol. Biopro. Eng. 8, 306-308 https://doi.org/10.1007/BF02949223
  10. Mateo, C., A. Archelas and R. Furstoss. 2003. A spectrophotometric assay for measuring and detecting an epoxide hydrolase activity. Anal. Biochem. 314, 135-141 https://doi.org/10.1016/S0003-2697(02)00646-2
  11. Weijers, C. A. G. M. 1997. Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron: Asymmetry. 8, 639-647 https://doi.org/10.1016/S0957-4166(97)00012-8