DOI QR코드

DOI QR Code

A Study on the Manganese Oxidation and Characteristics of Aeromonas sp

Aeromonas sp. MN44의 특성과 망간 산화에 관한 연구

  • 구종서 (한남대학교 이과대학 미생물학과) ;
  • 박경량 (한남대학교 이과대학 미생물학과)
  • Published : 2005.02.01

Abstract

Sixty four bacterial colonies which were able to oxidize the manganese were isolated from soil samples in Mokcheon and Ochang area. Among them, one bacterial strain was selected for this study based on its higher manganese oxidation, and this selected bacterial strain was identified as Aeromonas sp. MN44 through physiological-biochemical test and analysis of its 16s rRNA sequence. Aeromonas sp. MN44 was able to utilize lactose but did not utilize various carbohydrates as a sole carbon source. Aeromonas sp. MN44 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, ampicillin, tetracycline and spectinomycin, and heavy metal such as cadmium. But this strain showed a high resistance up to mg/ml unit to heavy metals such as lithium and manganese. Optimal manganese oxidation condition of Aeromonas sp. MN44 was pH 7.4 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. So, we concluded that this factor was protein. The manganese oxidizing factor produced by Aeromonas sp. MN44 was partial purified by ammonium sulfate precipitation, DEAE-Toyopearl 650M ion exchange chromatography and Sephadex gel filtration chromatography. Its molecular mass was about 113 kDa.

충청남도 목천과 충청북도 오창 근교의 토양으로부터 망간을 산화하는 64 집락을 분리하고 이 중 망간 산화능이 가장 우수한 한 균주를 최종 선별하여 생리, 생화학적 특성을 조사하고, 16S rRNA 염기 서열분석 등을 통하여 동정한 결과 최종 선별된 균주는 Aeromonas sp. MN44로 확인되었다. 최종 선별된 Aeromenas sp. MN44는 lactose를 제외한 여러 당들은 이용하지 못하였으며, 중금속내성은 lithium과 manganese에 대해서는 mg/ml 단위의 높은 농도까지 중금속 내성을 가지고 있었지만 cadmium에는 전혀 내성을 나타내지 않았다. 또 kanamycin, chloramphenicol, ampicillin, tetracycline, spectinomycin등 조사한 모든 항생제에 대해 전혀 내성을 갖지 않았다. Aeromonas sp. MN44가 생성하는 망간산화물질의 최적 pH는 pH 7.4로 확인되었으며, 이 균이 생성하는 망간 산화 factor는 proteinase K와 가열처리에 의해 저해되는 단백질이고, ammonium sulfate 침전과 ion exchange chromatography 그리고 gel filtration의 단계를 통해 부분 정제한 망간 산화 factor의 분자량은 약 113 kDa로 확인되었다.

Keywords

References

  1. Adams, L. F., and W. C. Ghiorse. 1987. Characterization of extracellular $Mn^{2+}$-oxidizing activity and isolation of an $Mn^{2+}$oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol. 169, 1279-1285
  2. Beyerinck, M. W. 1913. Oxidation des Mangancarbonates durch Bacterien und Schimrnelpilze. Folia Microbiol. 2, 123-134
  3. Boogerd, F. C., and J. P. M. de Vrind. 1987. Manganese oxidation by Leptothrix discophora. J. Bacteriol. 169, 489-494
  4. de Vrind, J. P. M., E. W. de Vrind-de Jong, J. W. H. de Voogt, P. Westbroek, F. C. Boogerd, and R. A. Rosson. 1986. Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl. Environ. Microbiol. 52, 1096-1100
  5. Douka, C. E. 1980. Kinetics of manganese oxidation by cell-free extracts of bacteria isolated from manganese concretions from soil. Appl. Environ. Microbiol. 39, 74-80
  6. Ehrlich, H. L. 1968. Bacteriology of manganese nodules. II. Manganses oxidation by cell-free extracts from a manganese nodule bacterium. Appl. Microbiol. 16, 197-202
  7. Jung, W. K., and R. Schweisfurth. 1979. Manganese oxidation by an intracellular protein of a Pseudomonas species. Z. Allg. Mikrobiol. 19, 107-115 https://doi.org/10.1002/jobm.3630190206
  8. Krieg, N. R., and J. G. Holt. 1984. Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore
  9. Laemmli, U. K. 1970. Oeavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  10. MacFaddin, J. F. 1984. Biochemical tests for identification of medical bacteria, 2nd ed. Williams & Wilkins CoMiget, R. J., C. H. Oppenheimer, H. I. Kator, and D. A. La. Rock. 1969. Microbial degradation of normal paraffin hydrocarbon in crude oil. In proceedings of the joint conference on prevention and control of oil spills, A. D. O. F. W. P. C. A. American Petroleum Institute., New York. 327-331
  11. Mann, P. J. G., and J. H. Quastel. 1946. Manganese metabolism in soils. Nature 158, 154-156 https://doi.org/10.1038/158154a0
  12. Mathur, A. K., and K. K. Dwivedy. 1988. Biogenic approach to the treatment of uranium mill effluents. Uranium 4, 385-394
  13. Mouchet, P. 1992. From conventional to biological removal of iron and manganese in France. Am. Water Works Assoc. J. 84, 158-167
  14. Nelson, Y. M., L. W. Lion, W. C. Ghiorse, and M. L. Shuler. 1999. Production of biogenic Mn Oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics, Appl. Environ. Microbiol. 65, 175-180
  15. Okazaki, M., T. Sugita, M. Shimizu, Y. Ohode, K. Iwamoto, E. W. de Vrind, de Jong, J. P. M. de Vrind, and P. L. A. M. Corstjens. 1997. Partial purification and characterization of manganese oxidizing factors of Pseudomonase fluorescens GB-1, Appl. Environ. Microbiol. 63, 4793-4799
  16. Organism central. 2001. Lippincott Williams and Wilkins Philadelphia. Baltimore, New York
  17. Tebo, B. M., K. H. Nealson, S. Emerson, and L. Jacobs. 1984. Microbial mediation of Mn(II) and Co (II) precipitation at the $O_2/H_2S$ interfaces in two anoxic fjords. Limnol. Oceanogr 29, 1247-1258 https://doi.org/10.4319/lo.1984.29.6.1247
  18. Tebo, B. M. 1991. Manganes(II) oxidation in the suboxic zone of the Black Sea. Deep Sea Res. 38(Suppl. 2), S883-S905 https://doi.org/10.1016/S0198-0149(10)80015-9
  19. Wagner, D. B., G. R Fumier, M. A. Saghai-Maroof, S. M. Williams, B. P. Dancik, and R W. Allard. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl. Acad. Sci. 84, 2097-2100

Cited by

  1. Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein vol.18, pp.1, 2008, https://doi.org/10.5352/JLS.2008.18.1.084