DOI QR코드

DOI QR Code

Changes of Activities and Isozymes of Lactate Dehydrogenase in Coreoperca herzi and Pseudogobio esocinus Acclimated to Rapid Increase of Dissolved Oxygen

급격한 용존산소량 증가에 순응한 꺽지(Coreoperca herzi)와 모래무지(Pseudogobioesocinus) 젖산탈수소효소 활성과 동위효소의 변화

  • Cho Sung Kyu (Department of Life Science, Cheongju University) ;
  • Yum Jung Joo (Department of Life Science, Cheongju University)
  • 조성규 (청주대학교 생명유전통계학부 생명과학전공) ;
  • 염정주 (청주대학교 생명유전통계학부 생명과학전공)
  • Published : 2005.02.01

Abstract

The metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) and $C_4$ isozyme were studied in tissues of Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen (DO). In C. herzi the LDH activity was changed $35-39\%$ in brain and liver tissues, and within $20\%$ in other tissues. The $B_4$ isozyme was increased and isozyme containing subunit C was decreased in muscle tissue. The $B_4$ isozyme was increased in heart and kidney. In P. esocinus, the LDH activity in liver tissues was largely increased to $150\%$ for 30 minute and $70\%$ in other tissues. The $A_4$ isozyme was increased in muscle and $B_4$ isozyme was increased in other tissues. Especially, the metabolism of liver tissue in P. esocinus was regulated by increasing liver-specific $C_4$ and decreasing $A_4$ isozyme. But the metabolism of eye tissue in C. herzi was regulated by decreasing LDH activity and eye-specific $C_4$ isozyme. The LDH activity and LDH isozyme in P. esocinus were largely increased than C. herzi acclimated to rapid increase of DO. And eye-specific $C_4$ and liver-specific $C_4$ isozymes played role as lactate oxidase. Therefore, the response of species acclimated to rapid increase of DO seems to be variable, perhaps due to prior exposure to environmental conditions.

용존산소(DO)의 급격한 증가에 순응된 꺽지(Coreoperca herzi)와 모래무지(Pseudogobio esocinus) 조직내 젖산탈수소효소(EC 1.1.1.27, lactate dehydrogenase, LDH)의 대사와 $C_4$ 동위효소를 확인하였다. DO 18 ppm에 갑작스럽게 순응시 꺽지 LDH활성은 뇌와 간조직에서 각각 $35-39\%$ 변화되었고, 다른 조직에서는 $20\%$이내로 변화가 적었다. 골격근조직은 LDH $A_4$ 동위효소가 증가되고 하부단위체 C를 포함하는 동위효소는 감소되었다. 심장조직은 $B_4$ 동위효소가 조금 증가되었다. 신장조직도 $B_4$가 증가하고 눈 조직은 eye-specific $C_4$와 C hybrid가 감소되어 조절되었다. DO 증가에 갑작스럽게 순응한 모래무지 간조직에서 LDH 활성은 30분에서 급격하게 $150\%$이상 크게 증가되었고, 다른 조직에서는 $70\%$ 이상 변화되었다. 그리고 골격근조직은 $A_4$ 동위효소가 증가하고 다른 조직들에서는 $B_4$가 증가되었으며 특히 간 조직의 대사는 liver-specific $C_4$가 증가하고 $A_4$ 는 감소되어 조절되었다. 그러나 꺽지 눈 조직의 대사는 LDH 활성이 감소하고 eye-specific $C_4$ 동위효소가 감소되어 조절되었다. 따라서 DO증가에 순응시 모래무지는 꺽지에 비해 LDH 활성이 크게 증가되었고 동위효소의 변화정도도 크게 나타났으며, eye-spe-cific $C_4$와 liver-specific $C_4$ 동위효소는 lactate oxidase로서 대사를 조절하였다. 그러므로 환경변화에 순응하여 나타나는 대사는 종이 이전에 어떤 서식조건에 적응되었는가에 따라 다른 것으로 사료된다.

Keywords

References

  1. Almeida-Val, V. M. V. and A. L. Val. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. 105B, 21-28
  2. Begum, G. and S. Vijayraghavan. 1999. Effect of acute exposure of the oraganophosphate insecticide Rogor on some biochemical aspects of Clarias batrachus (Linnaeus). Environ. Res. Sec. A80, 80-83
  3. Cho, S. K. and J. J. Yum. 1996. The adaptational phenotype of lactate dehydrogenase isozymes in Pseudogobio esocinus by the environmental variation. J. Ind. Sci., Cheongju Univ. 14, 333-343
  4. Cho, S. K., J. B. Kim and J. J. Yum. 2004. Acclimation of lactate dehydrogenase in tissues of Coreoperca herzi to acute change of pH. J. Ind. Sci., Cheongju Univ. 22, 35-41
  5. Choi, K. C., S. R. Jeon, J. S. Kim and Y. M. Son. 1990. Coloured Illustrations of the Freshwater Fishes of Korea. pp. 69, 152, 177. Hyangmoon Co., Korea
  6. Cooker, L. A. and E. Goldberg. 1994. Organization and Roles in Evolution, Genetics and Physiology, pp. 83-93, In Markert, C. L., J. G. Scandalios, H. A. Lim and O. L. Serov (eds.), Isozymes, World Scientific Publishing Co., Singapore
  7. Coppes, Z. L., M. L. B. Schwantes and A. R. Schwantes. 1987. Adaptive features of enzymes from family Sciaenidae-III, Studies on lactate dehydrogenase(LDH) of fishes from the south coast of Uruguay. Comp. Biochem. Physiol. 88B, 1005-1012
  8. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  9. Di Giulio, R. T., P. C. Washburn, R. J. Wenning, G. W. Winston and C. S Jewell. 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8, 1103-1123 https://doi.org/10.1897/1552-8618(1989)8[1103:BRIAAA]2.0.CO;2
  10. Diaz, R. J. and R. Rosenberg. 1995. Marine benthic hypoxia: a review of it's ecological effects and the behavioral responses of benthic macrofauna. Oceanogr. Mar. Bid. Ann. Rev. 33, 245-303
  11. Feller, G., J. P. Pauly, A. Smal, P. P'Carra, and C. Gerday. 1991. The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance. Biochem. Biophys. Acta. 1079, 343-347 https://doi.org/10.1016/0167-4838(91)90079-F
  12. Felton, G. W. 1995. Oxidative stress of vertebrates and invertebrates, pp. 356-434, In Ahmad, S. (eds.), Oxidative stress and antioxidant defense in bology, Chapman and Hall, New York
  13. Hazel, J. R. and C. L. Prosser. 1974. Molecular mechanisms of temperature compensation in poikilotherms. Physiological reviews 54(3), 620-677
  14. Hochachka, P. W., S. C. Land, and L. T. Buck. 1997. Oxygen sensing and signal transduction in metabolic defense against hypoxia: lessons from vertebrate facultative anaerobes. Comp. Biochem. Physiol. 118A, 23-29
  15. Kim, J. B. and J. J. Yum. 1997. Acclimation of lactate dehydrogenase in Silurus asotus to acute environmental variations. J. Ind. Sci., Cheongju Univ. 15, 381-388
  16. Kim, J. B., S. K. Kim and J. J. Yum. 2003. Changes of activities and isozymes of lactate dehydrogenase in Pseudogobio esocinus acclimated to acute change of temperature. J. Ind. Sci., Cheongju Univ. 21, 37-44
  17. Kim, J. B., S K. Cho and J. J. Yum, 2004. Changes of activities and isozymes of lactate dehydrogenase in Coreoperea herzi acclimated to acute increase of temperature for short-term period. J. Ind. Sci., Cheongju Univ. 22, 43-50
  18. Park, S. Y. and J. J. Yum. 1995. Acclimation of lactate dehydrogenase isozymes in Coreoperca herzi by environmental variation. Korean J. Environ. Biol. 13, 121-130
  19. Park, H. D. and J. J. Yum. 1999. Redistribution of lactate dehydrogenase isozymes and morphology of tissues in Mus musculus after irradiation. Korean J. Environ. Bio. 17, 263-270
  20. Prosser, C. L. 1958. The nature of physiological adaption. pp. 167-180. In C. L. Prosser, (ed.), Physiological adaptation. Ronald Press, New York
  21. Rees, B. B., F. A. Sudradjat and J. W. Love. 2001. Acclimation to hypoxia increases survival time of zebrafish, Dania rerio, during lethal hypoxia. J. Exp. Zool. 289, 266-272 https://doi.org/10.1002/1097-010X(20010401/30)289:4<266::AID-JEZ7>3.0.CO;2-5
  22. Rifkind, J. M., O. Abugo, A. Levy, R. Monticone and J. Heim. 1993. Formation of Free Radicals under Hypoxia, pp. 509-525. In Hochachka, P. W., P. L. Lutz, M. Rosenthal, G. V. D. Thillart, (eds.), Surviving hypoxia: mechanism of control and adaptation. CRC Press Inc., Boca Raton, FL
  23. Shaklee, J. B. and G. S. Whitt. 1981. Lactate dehydrogenase isozymes of Gadiform fishes: divergent patterns of gene expression indicate a heterogeneous taxon. Copeia 3, 567-578
  24. Somero, G. N. and P. W. Hochachka. 1969. Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydregenase isoenzymes by temperature decreases. Nature 223, 194-195 https://doi.org/10.1038/223194a0
  25. Virani, N. A. and B. B. Rees. 2000. Oxygen consumption, blood lactate and inter-individual variation in the gull killifish, Fundulus grandis, during hypoxia and recovery. Comp. Biochem. Physiol. 126A, 397-405
  26. Wheat, T. E. and E. Goldberg. 1983. Sperm-specific lactate dehydrogenase $C_4$: Antigenic structure and irmnunosuppession of fertility. pp. 113-129. In Isozymes: Current Topics in Biological and Medical Research 7
  27. Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-36 https://doi.org/10.1002/jez.1401750102
  28. Whitt, G. S. 1987. Species differences in isozyme tissue patterns: their utility for systematic and evolutionary analysis, 1-26. In Isozymes: Current Topics and Medical Research 15, Genetics, development and evolution. Alan R. Liss, New York
  29. Whitt, G. S., E. T. Millet and J. B. Shaklee. 1973. Developmental and biochemical genetics of lactate dehydrogenase isozymes in fishes. pp. 243-276. In J. H. Schroder(eds.), Genetics and Mutagenesis in Fish.. Spring Verlag, Berlin
  30. Winn, R. N. and D. M. Knott. 1992. An evaluation of the survival of experimental populations exposed to hypoxia in the Savannah River estuary. Mar. Ecol. Prog. Ser. 88, 161-179 https://doi.org/10.3354/meps088161

Cited by

  1. Variation of Lactate Dehydrogenase Isozymes in Angelfish (Pterophyllum scalare) according to Acute Environmental Change vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.416
  2. Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State vol.26, pp.2, 2016, https://doi.org/10.5352/JLS.2016.26.2.155
  3. Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4Isozyme in Greenling (Hexagrammos otakii) vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1565
  4. Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.118