Hydrolysis of Triglycerides with Cold-Adapted Lipase of Psychrobacter sp. S3 Isolated from Intertidal Flat

갯벌에서 분리된 Psychrobacter sp. S3균 유래의 저온성 리파제에 의한 트리글리세리드의 가수분해 특성

  • Lee Sung-A (Division of Biotechnology, The Catholic University of Korea) ;
  • Lee Jung-Hyun (Marine Biotechnology Research Centre KORDI) ;
  • Kim Sang-Jin (Marine Biotechnology Research Centre KORDI) ;
  • Kim Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • Published : 2005.03.01

Abstract

Lipase-producing bacteria (S3) were isolated from intertidal flat at Saemanguem. A isolated strain was identified as Psychrobacter species by physiological and fermentational characterization as well as 16S rRNA analysis. The strain was then named as Psychrobacter sp. S3. P. sp. S3 grew most rapidly at $30^{\circ}C$, but grew well even at $10^{\circ}C$ and its lipase activity was most high when cultivated at $20^{\circ}C$. Lipase S3 had optimum temperature of $30^{\circ}C$ for the hydrolysis of p-nitrophenyl caproate and had more than $80^{\circ}C$ activity even at $10^{\circ}C$. The activation energy was calculated to be 1.5 kcal/mol, which showed that it was a typical cold-adapted enzyme. It was an alkaline enzyme with optimum pH of $9.0\~9.5$. It could hydrolyze various length of triglycerides. Among them, it hydrolyzed most rapidly $C_4,\;C_{14},\; C_{16}-length$ triglycerides. When added to tributyrin-agarose gel, lipase S3 hydrolyzed tributyrin most rapidly at 30 and $40^{\circ}C$, but it could hydrolyze well even at $4^{\circ}C$.

새만금 갯벌로부터 리파제를 생산하는 균주(S3)를 분리하였다. 생리적, 발효적 특성 및 계통분류학적 특성을 통해서 이 분리균이 Psychrobacter속에 속하는 것으로 판명되어서 Psychrobacter sp. S3로 명명하였다 이 균의 온도에 따른 배양특성을 구한 결과, $30^{\circ}C$에서 생장속도가 가장 빨랐으나, 리파제 효소의 활성은 $20^{\circ}C$에서 가장 높았다. S3리파제의 온도에 따른 p-nitrophenyl caproate 분해활성을 측정한 결과, 최적 온도가 $30^{\circ}C$로 판명되었으며 $10^{\circ}C$에서도 최고활성의 $80\%$ 이상의 활성을 유지하였다. 또한, $10-30^{\circ}C$범위에서의 효소활성에너지가 1.5 kcal/mol로 매우 낮게 계산되었다. 이것을 통해 S3 리파제가 전형적인 저온성 효소임이 확인되었다. 이 효소는 최적 pH가 $9.0\~9.5$인 알칼리성 효소로 확인되었다. 여러 길이의 트리글리세리드 기질을 분해할 수 있으며 그 중에서 $C_4,\;C_{14},\; C_{16}$기질을 가장 빠르게 분해하였다. S3리파제를 트리뷰티린-아가로스 젤에 가하여 온도별로 반응시킨 결과, $30^{\circ}C$$40^{\circ}C$에서 반응이 빠르게 진행되었으나, $4^{\circ}C$에서도 분해가 진행되었다.

Keywords

References

  1. Arpigny, J. L., G. Feller, and C. Gerday. 1993. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta 1171: 331-333 https://doi.org/10.1016/0167-4781(93)90078-R
  2. Feller, G. and C. Gerday. 1997. Psychrophilic enzymesmolecular basis of cold adaptation. Cell. Mol. Life Sci. 53: 830-841 https://doi.org/10.1007/s000180050103
  3. Feller, G., E. Narinx, J. L. Arpigny, M. Aittaleb, E. Baise, S. Genicot, and C. Gerday. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202 https://doi.org/10.1111/j.1574-6976.1996.tb00236.x
  4. Gerday, C, M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D. Amico, J. Dumont, 0. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  5. Herbert, R. A. 1992. The perspective on the biotechnological potential of extremophiles. Trends Biotechnol. 10: 395-402 https://doi.org/10.1016/0167-7799(92)90282-Z
  6. Ingraham, J. L. and J. L. Strokes. 1959. Psychrophilic bacte-ria. Bacteriol. Rev. 23: 97-108
  7. Jaeger, K. E., S. W. Dijkstra and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipase. Annu. Rev. Microbial, 53: 315-351 https://doi.org/10.1146/annurev.micro.53.1.315
  8. Jaeger, K. K. and T. Eggert. 2002. Lipases for biotechnology. Curro Opin. Biotechnol. 13: 390-397 https://doi.org/10.1016/S0958-1669(02)00341-5
  9. Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of $Ca^{2+}-dependent$ lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212 https://doi.org/10.1016/S1388-1981(02)00214-7
  10. Kim, H. K., Y. J. Jung, W. C. Choi, H. S. Ryu, T. K. Oh, and J. K. Lee. 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235: 349-355
  11. Kulakova, L., A. Galkin, T. Nakayama, T. Nishine, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of $Gly{\to} Pro$ substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65 https://doi.org/10.1016/j.bbapap.2003.09.008
  12. Laemrnli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Margesin, R. and F. Schinner. 1994. Properties of coldadapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33: 1-14 https://doi.org/10.1016/0168-1656(94)90093-0
  14. Quinn, D. M., K. Shirai, R. L. Jackson, and J. A. K. Harmony. 1982. Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl ester: inhibition by apolipoprotein-II. Biochemistry 21: 6872-6879 https://doi.org/10.1021/bi00269a038
  15. Reetz, M. T. 2002. Lipases as practical biocatalysts. Curro Opin. Chem. Biol. 6: 145-150. https://doi.org/10.1016/S1367-5931(02)00297-1