References
- Araya, R., T. Katsuji, T. Tatsuya, Y. Nobuyasu, and N. Masao. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbial. Ecal. 43: 111-119 https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
- Bryer J. D. and B. D. Ratner. 2004. Bioinspired implant materials befuddle bacteria. ASM News. 70: 232-237
- Casper-Lindley, C. and F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae OI El Tor. J. Bacteriol. 186:1574-1578 https://doi.org/10.1128/JB.186.5.1574-1578.2004
- Costerton, J. W., G G Geesey, and G K. Cheng. 1978. How bacteria stick. Sci. Am. 238:86-95 https://doi.org/10.1038/scientificamerican0178-86
- Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322 https://doi.org/10.1126/science.284.5418.1318
- Croxatto, A., V. J. Chalker, J. Lauritz, J. Jass, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184: 1617-1629 https://doi.org/10.1128/JB.184.6.1617-1629.2002
- Danese, P. N., L. A. Pratt, and R. Kolter. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182: 3593-3956 https://doi.org/10.1128/JB.182.12.3593-3596.2000
- Davey, M. E., N. C. Caiazza, and G A. O'Tool. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacterial, 185: 1027-1036 https://doi.org/10.1128/JB.185.3.1027-1036.2003
- Davies, D. G., M. R. Parsek., J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298 https://doi.org/10.1126/science.280.5361.295
- Dewanti, R., and A. C. L. Wong. 1995. Influence of culture conditions on biofilm formation by Escherichia coli 0157:H7. Int. J. Food Microbiol. 26: 147-164 https://doi.org/10.1016/0168-1605(94)00103-D
- Donlan, R. M. and J. W. Costerton. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167-193 https://doi.org/10.1128/CMR.15.2.167-193.2002
- Eberl, L., M. K. Winson, C. Sternberg, G. S. Stewart, G. Christiansen, S. R. Chhabra, B. Bycroft, P. Williams, S. Molin, and M. Givskov. 1996. Involvement of N-acyl-Lhomoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbial. 20: 127-136 https://doi.org/10.1111/j.1365-2958.1996.tb02495.x
- Friedman, L., and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675-690 https://doi.org/10.1046/j.1365-2958.2003.03877.x
- Friedman, L., and R. Kolter. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457-4465 https://doi.org/10.1128/JB.186.14.4457-4465.2004
- Gavin, R., A. A. Rabaan, S. Merino, J. M. Tomas, I. Gryllos, and J. G. Shaw. 2002. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol. 43: 383-397 https://doi.org/10.1046/j.1365-2958.2002.02750.x
- Gilbert, P., J. Das, and I. Foley. 1997. Biofilms susceptibility to antimicrobials. Adv. Dent. Res. 11: 160-167 https://doi.org/10.1177/08959374970110010701
- Giron, J. A., A. G. Torres, E. Freer, and J. B. Kaper. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44: 361-379 https://doi.org/10.1046/j.1365-2958.2002.02899.x
- Hammer, B. K., and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50: 101-114 https://doi.org/10.1046/j.1365-2958.2003.03688.x
- Hasman, H., M. A. Schembri, and P. Klemm. 2000. Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J. Bacteriol. 182: 1089-1095 https://doi.org/10.1128/JB.182.4.1089-1095.2000
- Herrington, D. A., R. H. Hall, G. Losonsky, J. J. Mekalanos, R. K. Taylor, and M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168: 1487-1492 https://doi.org/10.1084/jem.168.4.1487
- Hoang, H. H., A. Becker, and J. E. Gonzalez. 2004. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sino rhizobium meliloti gene expression. J. Bacteriol. 186: 5460-5472 https://doi.org/10.1128/JB.186.16.5460-5472.2004
- Jensen, E. T., A. Kharazani, K. Lam, J. W. Costerton, and N. Hoiby. 1990. Human polymorphonuclear leukocute response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58: 2383-2385
- Jeong, H. S., M. H. Lee, K.-H. Lee, S.-J. Park, and S. H. Choi. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 278: 45072-450781 https://doi.org/10.1074/jbc.M308184200
- Kalmbach, S., W. Manz, and U. Szewzyk. 1997. Dynamics of biofilm formation in drinking water: Phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. Microb. Ecol. 22: 265-279 https://doi.org/10.1111/j.1574-6941.1997.tb00379.x
- Kovacikova, G and K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46: 1135-1147 https://doi.org/10.1046/j.1365-2958.2002.03229.x
- Kovacikova, G and K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46: 1135-1147 https://doi.org/10.1046/j.1365-2958.2002.03229.x
- Kwon, K. K., H. S. Lee, S. Y. Jung, J. H. Yim, J. H. Lee, and H. K. Lee. 2002. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike, Korea. J. Microbiol. 40: 260-266
- Lee, J. H., J. B. Rho, K. J. Park, C. B. Kim, Y. S. Han, S. H. Choi, K.-H. Lee, and S.-J. Park. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun. 72: 4905-4910 https://doi.org/10.1128/IAI.72.8.4905-4910.2004
- Lee, Y. K., K. K. Kwon., K. H. Cho, H. W. Kim, J. H. Park, and H. K. Lee. 2003. Culture and identification of bacteria from marine biofilms. J. Microbiol. 41: 183-188
- Matsukawa, M. and E. P. Greenberg. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186: 4449-4456 https://doi.org/10.1128/JB.186.14.4449-4456.2004
- McCarter, L. L. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacterial. 180: 3166-3173
- Mclean, R J. C., M. Whiteley, D. J. Stickler, and W. C. Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154: 259-263 https://doi.org/10.1111/j.1574-6968.1997.tb12653.x
- Nyvad, B., and M. Kilian. 1990. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24: 267-272 https://doi.org/10.1159/000261281
- Olvera, C, J. B. Goldberg, R Sanchez, and G SoberonChavez. 1999. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett. 179: 85-90 https://doi.org/10.1111/j.1574-6968.1999.tb08712.x
- O'Toole, G. A, H. B. Kaplan, and R Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbial. 54:49-79 https://doi.org/10.1146/annurev.micro.54.1.49
- O'Toole, G. A, and R Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbial. 30: 295-304 https://doi.org/10.1046/j.1365-2958.1998.01062.x
- O'Toole, G. A, and R Kolter. 1998. The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 30: 449-461
- Otto, K., and T. J. Silhavy. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl. Acad. Sci. USA. 99: 2287-2292
- Park, H. M., M. Wolfgang, J. P. M. van Putten, D. Dorward, S. F. Hayes, and M. Koomey. 2001. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behavior and adherence to host tissue. Mol. Microbial. 42: 293-307 https://doi.org/10.1046/j.1365-2958.2001.02629.x
- Parsek, M. R, and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701 https://doi.org/10.1146/annurev.micro.57.030502.090720
- Pellock, B. J.,M. Teplitski, R P. Boinay, W. D. Bauer, and G. C. Walker. 2002. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol. 184: 5067-5076 https://doi.org/10.1128/JB.184.18.5067-5076.2002
- Pratt, L. A, and R Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: Defining the roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-294 https://doi.org/10.1046/j.1365-2958.1998.01061.x
- Pratt, L. A and R Kolter. 1999. Genetic analyses of bacterial biofilm formation. Curro Opin. Microbiol. 2: 598-603
- Rashid, M. H., C. Raj anna, D. Zhang, V. Pasquale, L. S. Magder, A. Ali, S. Dumontet, and D. K. R. Karaolis. 2004. Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol. Lett. 230: 105-113 https://doi.org/10.1016/S0378-1097(03)00879-6
- Sauer, K., A. K. Camper. G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154 https://doi.org/10.1128/jb.184.4.1140-1154.2002
- Schembri, M. A, G. Christiansen, and P. Klemm. 2001. FimH-mediated autoaggregation of Escherichia coli. Mol. Microbiol. 41: 1419-1430 https://doi.org/10.1046/j.1365-2958.2001.02613.x
- Silva A. J. and J. A Benitez. 2004. Transcriptional regulation of Vibrio cholerae hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. J. Bacteriol. 186: 6374-6382 https://doi.org/10.1128/JB.186.19.6374-6382.2004
- Singh, R, O. C. Stine, D. L. Smith, J. K Jr. Spitznagel, M. E. Labib., and H. N. Williams. 2003. Microbial diversity of biofilms in dental unit water systems. Appl. Environ. Microbiol. 69:3412-3420 https://doi.org/10.1128/AEM.69.6.3412-3420.2003
- Stoodley, P., K Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187-209 https://doi.org/10.1146/annurev.micro.56.012302.160705
- Thelin, K. H., and R. K. Taylor. 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae OI EI Tor biotype and 0139 strains. Infect. Immun. 64: 2853-2856
- Vance, R. E., J. Zhu, and J. J. Mekalanos. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71: 2571-2576 https://doi.org/10.1128/IAI.71.5.2571-2576.2003
- Watnick, P. I., K. J. Fullner, and R. Kolter. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae EI Tor. J. Bacteriol. 181: 3606-3609
- Watnick, P. I., C. M. Lauriano, K. E. Klose, L. Croal, and R. Kolter. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39: 223-235 https://doi.org/10.1046/j.1365-2958.2001.02195.x
- Wilson, M. 2001. Bacterial biofilms and human disease. Sci. Progress 84: 235-254 https://doi.org/10.3184/003685001783238998
-
Yildiz, F. H., N. A. Dolganov, and G. K. Schoolnik. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and
$EPS^{ETr}-associated $ phenotypes in Vibrio cholerae OI EI Tor. J. Bacteriol. 183: 1716-1726 https://doi.org/10.1128/JB.183.5.1716-1726.2001 - Yildiz, F. H., and G. K. Schoolnik. 1999. Vibrio cholerae OI El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA. 96: 4028-4033
- Zhu, J., and J. J Mekalanos. 2003. Quorum sensing-depen-dent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5: 647-656 https://doi.org/10.1016/S1534-5807(03)00295-8
- Zobell, C. E. 1943. The effect of solid surfaces upon bacterial activity. J. Bacterial. 46: 39-56