Surface Morphologies and Internal Fine Structures of Bast Fibers

  • Wang H. M. (School of Engineering and Technology, Deakin University) ;
  • Wang X. (School of Engineering and Technology, Deakin University)
  • Published : 2005.03.01

Abstract

Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

Keywords

References

  1. W. R. Goynes in 'Modern Textile Characterization Methods', (M. Raheel Ed.), pp.145-174, Marcel Dekker Inc., New York, 1996
  2. K. K. Wong, X. M. Tao, C. W. M. Yuen, and K. W. Yeung, Text. Res. J., 70(10), 886 (2000) https://doi.org/10.1177/004051750007001007
  3. S. K. Batra in 'Handbook of Fiber Chemistry', (M. Lewin and E.M. Pearce Eds.), pp.506-575, Marcel Dekker Inc., New York, 1998
  4. Ke. V. D. Velde and P. Kiekens, Journal of Thermoplastic Composite Materials, 15, 281 (2002) https://doi.org/10.1177/0892705702015004444
  5. D. E. Akin, R. B. Dodd, W. Perkins, G. Henriksson, and K. E. Eriksson, Text. Res. J., 70(6), 486 (2000) https://doi.org/10.1177/004051750007000604
  6. C. Garcia-Jaldon, D. Dupeyre, and M. R. Vignon, Biomass and Bioenergy, 14(3), 251 (1998) https://doi.org/10.1016/S0961-9534(97)10039-3
  7. R. W. Kessler, U. Becher, B. Goth, and R. Kohler, Biomass and Bioenergy, 14,237 (1998) https://doi.org/10.1016/S0961-9534(97)10040-X
  8. R. W. Kessler and R. Kohler, Chemtech, 26(12), 34 (1996)
  9. H. M. Wang, R. Postle, R. W. Kessler, and W. Kessler, Text. Res. J., 73(8), 664 (2003) https://doi.org/10.1177/004051750307300802
  10. H. M. Wang and X. Wang, 'Proceedings of The Textile Institute 83rd World Conference', pp.779-782, Shanghai, China, May 23-27, 2004
  11. R. Postle and H. M. Wang, 'Natural Fibers', Vol. 2 (special edition), 'Proceedings of the International Conference-Bast Fibrous Plants on the Turn of Second and Third Millennium', Shenyang, China, 2001
  12. L. Cheek and L. Roussel, Text. Res. Inst., August, 478 (1989)
  13. Q. Liu, H. Wang, and J. Wang, J. China Textile University, 17(1),45 (1991)
  14. A. Mukherjee, P. K. Ganguly, and D. Sur, J. Text. Inst., 84(3), 348 (1993) https://doi.org/10.1080/00405009308658967
  15. T. K. Guha Roy, A. K. Mukhopadhyay, and A. K. Mukherjee, Text. Res. Inst, December, 875 (1984)
  16. S. C. Bag, P. K. Ray, B. K. Das, and A. K. Mukerjee, Text. Res. Inst., October, 611 (1987)
  17. R. Kohler and M. Wedler, 'Techtextil-symposium', p.331, Vortrags-Nr., 1994
  18. R. R. Mukherjee and T. Radhakrishnan, Textile Progress, 4(4), 1 (1972) https://doi.org/10.1080/00405167208688974
  19. R. Beltran, C. J. Hurren, A. Kaynak, and X. Wang, Fibers and Polymers, 3(4), 129 (2002) https://doi.org/10.1007/BF02912656
  20. H. W. Wang and X. Wang, Fibers and Polymers, 5(3), 171 (2004) https://doi.org/10.1007/BF02902995