Sphingomonas chungbukensis DJ77의 Glucosyl-Isoprenyl Phosphate-Transferase를 암호화할 것으로 추정되는 spsB 유런자

A spsB Gene Putatively Encoding Glucosyl-Isopreny Phosphate-Transferase in Sphingomonas chungbukensis DJ77

  • 이수연 (충북대학교 자연과학대학 생명과학부) ;
  • 최정도 (충북대학교 자연과학대학 생명과학부) ;
  • 신말식 (전남대학교 생활과학대학 식품영양학과) ;
  • 김영창 (충북대학교 자연과학대학 생명과학부, 충북대 바이오 연구소)
  • Lee Soo-Youn (School of Life Science, Chungbuk National University) ;
  • Choi Jung-Do (School of Life Science, Chungbuk National University) ;
  • Shin Malshick (Department of Food and Nutrition, Chonnam National University) ;
  • Kim Young-Chang (School of Life Science, Chungbuk National University, Biotechnology Research Institute, Chungbuk National University)
  • 발행 : 2005.03.01

초록

S. chungbukensis DJ77의 genome project수행 결과 다당류 생 합성 에 관련된 유전자들의 염기서열을 찾아내었다. 본 논문에서는 이러한 유전자들 중 sphigan형 다당류 생합성에 관여하는 glucosyl-isoprenyl phosphate-transferase를 암호화 하는 유전자의 완전한 서열을 결정하였고, spsB로 명명하였다. 이 유전자는 ATG를 개시코돈으로 사용하며, TGA를 종결코돈으로 사용하고 있다. 또한 총 1392 bp의 open reading frame을 포함하며, 463개의 아미노산으로 구성되어있다. SpsB를 구성하는 아미노산 서열은 동일한 속의 sphingan 형성 균주인 Sphingomonas spp S88의 SpsB와 $50\%$, Sphingomonas paucimobilis ATCC 31461의 GelB와 $48\%$의 유사성을 나타내었다.

Some genes, which are involved in the biosynthesis of polysaccharides, could be found by the genome project of Sphingomonas chungbukensis DJ77. In this study, we identified the complete nucleotide sequence of a gene, encoding the glucosyl-isoprenyl phosphate-transferase, which catalyzes the first step in the biochemical pathway for the synthesis of the sphingan type polysaccharide. This gene, named spsB, is initiated by the ATG codon and terminated by the TGA, and its open reading frame consists of 1392 bp, encoding 463 amino acids. The predicted amino acid sequence of this enzyme indicates $50\%$ similarity to SpsB of Sphingomonas spp S88, also produces sphingan, and $48\%$ to GelB of Sphingomonas paucimobilis ATCC 31461.

키워드

참고문헌

  1.  Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2.  Chou, F.L., H.C. Chou, Y.S. Lin, B.Y. Yang, N.T. Lin, S.F. Weng, and Y.H. Tseng. 1997. The Xantomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem. Biophys.Res. 233, 265-269 https://doi.org/10.1006/bbrc.1997.6365
  3.  Glucksmann, M. A., T. L. Reuber, and G. C. Walker. 1993. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J. Bacteriol. 175, 7033-7044 https://doi.org/10.1128/jb.175.21.7033-7044.1993
  4.  Harding, N.E., Y.N. Patel, and R.J. Coleman. 2004. Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas eoldea ATCC 31461. J. Ind. Microbiol. Biotch. 31, 70-82 https://doi.org/10.1007/s10295-004-0118-9
  5.  Janczarek, M., and A. Skorupska. 2004. Regulation of pssA and pssB gene expression in Rhizobium leguminosarum bv. trifolii in response to environmental factors. D. Microbiol. 85, 217-227
  6. Kim, C.K., J.W. Kim, Y.C. Kim, and T.I. Mheen. 1986. Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes. Kor. J. Microbiol. 24, 67-72
  7. Kim, S.J., J.S, Chun, K.S. Bae, and Y.C. Kim. 2000. Polyphasic assignment of an aromatic degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. Nov. Int. J. Syst. Evol. Microbiol. 50, 1641-1647 https://doi.org/10.1099/00207713-50-4-1641
  8.  Kranenburg, R., I.I. Swam, J.D. Marugg, M. Kleerebezem, and W.M. Vos. 1999. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: Functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J. Bacteriol. 181, 338-340
  9.  Lamothe, G.T., L. Jolly, B. Mollet, and F. Stingele. 2002. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch. Microbiol. 178, 218-228 https://doi.org/10.1007/s00203-002-0447-x
  10.  Moreira, L.M., P.A. Videira, S.A. Sousa, J.H. Leitao, M.V. Cunha, and Isabel Sá-Correia. 2003. Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem. Biophys. Res. 312, 323-333 https://doi.org/10.1016/j.bbrc.2003.10.118
  11.  Pollock, T.J., W.A. van Workum, L. Thorne, M.J. Mikolajczak, M. Yamazaki, J.W. Kijne, and R.W. Armentrout. 1998. Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonasstrain S88 and Rhizobium leguminosarum. J. Bacteriol. 180, 568-593
  12.  Pollok, T.J. 1993. Gellan-related polysaccharides and the genus Sphingomonas. J. Gen. Microbiol. 139, 1939-1945 https://doi.org/10.1099/00221287-139-8-1939
  13. Pollok, T.J., L. Throne, M. Yamazaki, M.J. Mikolahczak, and R.W. Armentrout. 1994. Mechanism of bacitracin resistance in gram-negative bacteria that synthesize exopolysaccharides. J. Bacteriol. 176, 6229-6237 https://doi.org/10.1128/jb.176.20.6229-6237.1994
  14.  Sa-Corria, I., A.M. Fialho, P. Videira, A.R. Marques, and H. Albano. 2002. Gellan gum biosynthesis in Sphingomonas paucimobils ATCC 31461: Genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biothechnol. 29, 170-176 https://doi.org/10.1038/sj.jim.7000266
  15.  Sambrook, J., E.F. Fritsch, and T. Maniatis. 1990. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York
  16.  Shilhavy, T.J., M.L. Berman, and L.W. Enquist. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory, New York
  17.  Stingele, F., J.W. Newell, and J.R. Neeser. 1999. Unraveling the Function of glycosyltransferases in Streptococcus thermophilus Sfi6. J. Bacteriol. 181, 6354-6360
  18. Thompson, T.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choide. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  19.  Thompson, T.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The ClustalX windows interface: flexible strategies for mlutiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
  20.  Wang, L., D. Liu, and P.R. Reeves. 1996. C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first Step of O-Antigen Synthesis. J. Bacteriol. 178, 2598-2604 https://doi.org/10.1128/jb.178.9.2598-2604.1996
  21.  Yamazaki, M., L. Thorne, M. Micorajczak, R.W. Armentrout, and T.J. Pollock. 1996. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J. Bacteriol.178, 2676-2687 https://doi.org/10.1128/jb.178.9.2676-2687.1996
  22.  Yoshida, Y., Y. Nakano, Y. Yamashita, and T. Koga. 1998. Identification of a genetic locus essential for serotype b-Specific antigen synthesis in Actinobacillus actinomycetemcomitans. Infec. Immun.66, 107-114