References
- Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI- BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
- Anthony, C. 1982. The Biochemistry of methylotrophs. Academic press, New York
- Baikalov, I., I. Schroder, M. Kaczor-Grzeskowiak, K. Grzeskowiak, R.P. Gunsalus and R.E. Dickerson. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry. 35, 11053-1161 https://doi.org/10.1021/bi960919o
- Barrett, E.L. and H.S. Kwan. 1985. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 39, 131-149 https://doi.org/10.1146/annurev.mi.39.100185.001023
- Choi, H.S., J.K. Kim, E.H. Cho, Y.C. Kim, J.I. Kim, and S.W. Kim. 2003. A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli. Biochem Biophys Res. Commun. 306(4), 930-936 https://doi.org/10.1016/S0006-291X(03)01087-8
- Dahl, J.S., Mehta, R.J. and Hoare, D.S. 1972. New obligate methylotroph. J. Bacteriol. 109(2), 916-921
- Doronina, N.V., T.D. Darmaeva, and Y.A. Trotsenko. 2003. Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from the East Mongolian saline soda lake. Int. J. Syst. Evol. Microbiol. 53, 223-229 https://doi.org/10.1099/ijs.0.02267-0
- Doronina, N.V., T.D. Darmaeva, and Y.A. Trotsenko. 2003. Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from Soda Lake of the Southern Transbaikal Region. Syst. Appl. Microbiol. 26, 382-389 https://doi.org/10.1078/072320203322497419
- Doronina, N.V., T.D. Li, E.G. Ivanova, O.V. Rodionova, and Y.A. Trotsenko, 2004. Methylophaga murata sp. nov. - haloalcalotolerant aerobic methylotroph from destroyed marble. Unpublished (as of 20 August 2004)
- Eldridge, A.M., H.S. Kang, E. Johnson, R. Gunsalus, F.W. Dahlquist, 2002. Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry. 41, 15173-15180 https://doi.org/10.1021/bi026254+
- Guest, I. and D.R. Varma, 1992. Teratogenic and macromolecular synthesis inhibitory effects of trimethylamine on mouse embryos in culture. J. Toxicol Environ Health. 36, 27-41 https://doi.org/10.1080/15287399209531621
- Hartig, E., U. Schiek, K.U. Vollack, and W.G. Zumft, 1999. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol. 181, 3658-65
-
Janvier, M. and P.A.D. Grimont, 1995. The genus Methylophaga, a new line of descent within phylogenetic branch
$\gamma$ of Proteobacteria. Microbial Paris. 146, 543-550 - Janvier, M., C. Frehel, F. Grimont, and F. Gasser, 1985. Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int. J. Syst. Bacteriol. 35, 131-139 https://doi.org/10.1099/00207713-35-2-131
- Kim, S.G., H.S. Bae, and S.T. Lee, 2001. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Arch Microbiol. 176, 271-277 https://doi.org/10.1007/s002030100319
- Koh, M., C.S. Kim, Y.A. Kim, H.S. Choi, E.H. Cho, E. Kim, Y.M. Kim and S.W. Kim, 2002. Properties of electron carriers in the process of methanol oxidation in a new restricted facultative marine methylotrophic bacterium, Methylophaga sp. MP. J. Microbiol. Biotechnol. 12, 476-482
- Lee, A.I., A. Delgado, and R.P. Gunsalus, 1999. Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J. Bacteriol. 181, 5309-5316
- Maris, A.E., M.R. Sawaya, M. Kaczor-Grzeskowiak, M.R. Jarvis, S.M. Bearson, M.L. Kopka, I. Schroder, R.P. Gunsalus, and R.E. Dickerson, 2002. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct .Biol. 9, 771-8 https://doi.org/10.1038/nsb845
- Moune, S., N. Manac'h, A. Hirschler, P. Caumette, J.C. Willison, and R. Matheron, 1999. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int. J. Syst. Bacteriol. 49 Pt 1, 103-112 https://doi.org/10.1099/00207713-49-1-103
- Schroder, I., R. Cavicchioli, and R.P. Gunsalus, 1994. Phosphorylation and dephosphorylation of the NarQ, NarX, and NarL proteins of the nitrate-dependent two-component regulatory system of Escherichia coli. J. Bacteriol. 176, 4985-92 https://doi.org/10.1128/jb.176.16.4985-4992.1994
- Stackebrandt, E., R.G.E. Murray, and H.G. Trtiper, 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the 'purple bacteria and their relatives'. Int. J. Syst. Bacteriol. 38, 321-325 https://doi.org/10.1099/00207713-38-3-321
- Thompson, J.D., D.G. Higgins, and T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Tsuji, K., H.C. Tsien, R.S. Hanson, S.R. DePalma, R. Sehoitz, and S. LaRoche, 1990. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136, 1-10 https://doi.org/10.1099/00221287-136-1-1
- Urakami, T. and K. Komagata, 1987. Characterization of species of marine methylotrophs of the genus Methylophagn. Int. J. Syst. Bacteriol. 37, 402-406 https://doi.org/10.1099/00207713-37-4-402
- Vedenina, I. and N.I. Govorukhina, 1988. Formation of a methylotrophic denitrifying biocenosis in a system of sewage treatment for nitrates. Mikrobiologia. 57, 320-328
- Yancey, P.H., W.R. Blake, and J. Conley, 2002. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 667-76 https://doi.org/10.1016/S1095-6433(02)00182-4
- Zhao, Y., S.K. Christensen, C. Fankhauser, J.R. Cashman, J.D. Cohen, D. Weigel, and J. Chory, 2001. A role for flavin monooxygenase- like enzymes in auxin biosynthesis. Science. 291, 306-309 https://doi.org/10.1126/science.291.5502.306
- Ziegler, D.M. 1988. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab. Rev. 19, 1-32 https://doi.org/10.3109/03602538809049617
- de Zwart, J.M.M., P.N. Nelisse, and J.G. Kuenen, 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from microbial mat. FEMS Microbiol. Ecol. 20, 261-270