DOI QR코드

DOI QR Code

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation

습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조

  • Kim Moon Hyeon (Department of Environmental Engineering, Daegu University, Environmental Technology Institute(ETI), Daegu University) ;
  • Choo Kwang-Ho (Department of Environmental Engineering, Kyungpook National University)
  • 김문현 (대구대학교 환경공학과/환경기술연구소) ;
  • 추광호 (경북대학교 환경공학과)
  • Published : 2005.02.01

Abstract

Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Keywords

References

  1. Luck, F., 1996, A review of industrial catalytic wet air oxidation processes, Catal. Today, 27, 195-202 https://doi.org/10.1016/0920-5861(95)00187-5
  2. Mishra, V. S., V. V. Mahajani and J. B. Joshi, 1995, Wet air oxidation, Ind. Eng. Chem. Res., 34, 2-48 https://doi.org/10.1021/ie00040a001
  3. Hamoudi, S., A Sayari, K. Belkacemi, L. Bonnevot and F. Larachi, 2000, Catalytic wet oxidation of phenol over $Pt_{x}Ag_{1-x}MnO_{2}/CeO_{2}$ catalysts, Catal. Today, 62, 379-388 https://doi.org/10.1016/S0920-5861(00)00439-9
  4. Qin, J, Q. Zhang and K. T. Chuang, 2001, Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts, Appl. Catal. B, 29, 115-123 https://doi.org/10.1016/S0926-3373(00)00200-9
  5. Klinghoffer, A. A, R. L. Cerro and M. A. Abraham, 1998, Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst, Catal. Today, 40, 59-71 https://doi.org/10.1016/S0920-5861(97)00122-3
  6. Fortuny, A., C. Bengoa, J. Font and A. Fabregat, 1999, Bimetallic catalysts for continuous catalytic wet air oxidation of phenol, J. Hazard. Mater. B, 64, 181-193 and references therein https://doi.org/10.1016/S0304-3894(98)00245-3
  7. Pintar, A, J. Batista and J. Levee, 2001, Catalytic denitrification: direet and indirect removal of nitrates from potable water, Catal. Today, 66, 503-510 https://doi.org/10.1016/S0920-5861(00)00622-2
  8. Pintar, A. and J. Batista, 1999, Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors, Catal. Today, 53, 35-50 https://doi.org/10.1016/S0920-5861(99)00101-7
  9. Pintar, A., J. Batista and J. Levee, 2001, Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water, Chem. Eng. Sci., 56, 1551-1559 https://doi.org/10.1016/S0009-2509(00)00382-1
  10. Gallezot, P., N. Laurain and P. Isnard, 1996, Catalytic wet-air oxidation of carboxylic acids on carbon-supported platinum catalysts, Appl, Catal. B, 9, L11- L17 https://doi.org/10.1016/0926-3373(96)90070-3
  11. Cheng, S. F. and S. C. Wu, 2001, Feasibility of using metals to remediate water containing TCE, Chemosphere, 43, 1023-1028 https://doi.org/10.1016/S0045-6535(00)00263-0
  12. Cybulski, A. and J. Trawczynski, 2004, Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts, Appl. Catal. B, 47, 1-13 https://doi.org/10.1016/S0926-3373(03)00327-8
  13. Kim, M. H. and K. H. Choo, 2003, Use of complex metal oxides for catalytic TCE oxidation, Theor. Appl. Chem. Eng., 9, 1180-1183
  14. Kim, M. H. and K H. Choo, 2004, Catalytic wet oxidation of TCE over supported metal oxides, Theor. Appl. Chem. Eng., 10, 1038-1041
  15. Park, K. W., K. H. Chao and M. H. Kim, 2003, Degradation of volatile organic compounds in water using a photocatalytic reactor with crossflow microfiltration membranes, Proceedings of IWA Asian Waterqual'03, Session 3Q3G14, IWA, Bangkok, Thailand, October 19-23, 1-8pp
  16. Hamoudi, S., F. Larachi and A. Sayari, 1998, Wet oxidation of phenolic solutions over heterogeneous catalysts: degradation profile and catalyst behavior, J. Catal., 177, 247-258 https://doi.org/10.1006/jcat.1998.2125
  17. Chen, H., A. Sayari, A. Adnot and F. Larachi, 2001, Composition-activity effects of Mn-Ceo composites on phenol catalytic wet oxidation, Appl, Catal. B, 32, 195-204 https://doi.org/10.1016/S0926-3373(01)00136-9
  18. Kim, M. H., J. R. Ebner, R. M. Friedman and M. A. Vannice, 2002, Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 208, 381-392 https://doi.org/10.1006/jcat.2002.3569
  19. Brik, Y, M. Kacimi, M. Ziyad and F. Bozon-Verduraz, 2001, Titania-supported cobalt and cobalt-phosphorus catalysts: characterization and performances in ethane oxidative dehydrogenation, J. Catal., 202, 118-128 https://doi.org/10.1006/jcat.2001.3262
  20. VoB, M., D. Borgmann and G. Wedler, 2002, Characterization of alumina, silica, and titania supported cobalt catalysts, J. Catal., 212, 10-21 https://doi.org/10.1006/jcat.2002.3739
  21. Pruden, A. L. and D. F. Ollis, 1983, Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water, J. Catal., 82, 404-417 https://doi.org/10.1016/0021-9517(83)90207-5
  22. Glaze, W., J. F. Kenneke and J. L. Ferry, 1993, Chlorinated byproducts from the $TiO_2$-me diated photodegradation of trichloroethylene and tetrachloroethylene in water, Environ. Sci. Technol., 27, 177-184 https://doi.org/10.1021/es00038a021
  23. Masende, Z. P. G., B. F. M Kuster, K. J. Ptasinski, F. J. J. K. Janssen, J. H. Y. Katima and J. C. Schouten, 2003, Platinum catalyzed wet oxidation of phenol in a stirred slurry reactor: a practical operation window, Appl. Catal. B, 41, 247-267 https://doi.org/10.1016/S0926-3373(02)00164-9
  24. Pintar, A., 2003, Catalytic processes for the purification of drinking water and industrial effluents, Catal. Today, 77, 451-465 https://doi.org/10.1016/S0920-5861(02)00385-1
  25. Frydman, A., D. G. Castner, M. Schmal and C. T. Campbell, 1995, Particle and phase thicknesses from XPS analysis of supported bimetallic catalysts: calcined $Co-Rh/Nb_{2}O_{5}$, J. Catal., 152, 164-178 https://doi.org/10.1006/jcat.1995.1070
  26. Ho, S. W., J. M. Cruz, M. Houalla and D. M. Hercules, 1992, The structure and activity of titania supported cobalt catalysts, J. Catal., 135, 173-185 https://doi.org/10.1016/0021-9517(92)90278-P

Cited by

  1. Catalysts and Their Activity in TCE Oxidation vol.23, pp.5, 2014, https://doi.org/10.5322/JESI.2014.5.829