Aging Effects on Sorption and Desorption of Atrazine in Soils

Atrazine의 토양 흡착 및 탈착에 미치는 접촉시간의 영향

  • Park Jeong-Hun (Dept. of Environmental Engineering, Chonnam National University)
  • Published : 2005.02.01

Abstract

The effects of soil-chemical contact time (aging) on sorption and desorption of atrazine were studied in soil slurries because aging is an important determinant affecting on the sorption and desorption characteristics of organic contaminants in the environment. Sorption isotherm and desorption kinetic experiments were performed, and soilwater distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear $(r^2\;>\;0.97)$ and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients $(K_d)$ increased with increasing aging in all soils studied. Sorption non-linearity did not increase with increased aging except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction $(f_{eq})$ decreased and the non-desorbable site fraction $(f_{nd})$ increased as a function of aging time in all soils. In all soils studied, it was found that when normalized to soil organic matter content the concentration of atrazine in desorbable sites was comparatively constant, whereas that in non-desorbable site increased as aging increased.

토양과 유기화합물의 접촉시간은 흡착과 탈착의 특성에 영향을 미치는 중요한 요소 중의 하나이다. 본 연구에서는 atrazine의 토양 흡착과 탈착에 미치는 접촉시간의 영향을 연구하였다. 등온 흡착실험을 수행하여 토양과 수용액 사이의 분배계수를 구하였고, 탈착에 대한 동력학 실험을 수행하고 three-site desorption모델을 이용, 회기분석 하여 탈착속도 계수들을 추산하였다. atrazine과 토양의 접촉시간은 2일에서부터 8개월까지 변화시켰다. 2일 흡착에 대한 atrazine의 흡착등온 곡선은 거의 선형이었고$(r^2>0.97)$, 흡착분배계수는 토양의 유기탄소 함량과 강한 양의 상관관계를 가졌으며 사용한 모든 토양에서 접촉시간이 길어질수록 증가하였다. 흡착곡선에서의 비선형성은 Houghton muck토양을 제외하고는 접촉시간에 따라 증가하지 않았다. 탈착실험 분석으로부터 접촉시간이 증가함에 따라 equilibrium site분율은 감소하고 non-desorbable site 분율은 증가함을 알 수 있었다. 사용한 모든 토양에서 토양유기탄소 함량으로 표준화한 경우 desorbable sites 에서의 atrazine농도는 접촉시간에 따라 비교적 일정한 것에 비해 non-desorbable site에서의 atrazine농도는 접촉시간이 증가함에 따라 증가하였다.

Keywords

References

  1. Carroll, K.M., Harkness, M.R., Bracco, A.A., and Balcarcel, R.R., 1994, Application of a penneant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson river sediments, Environ. Sci. Technol., 28, 253-258 https://doi.org/10.1021/es00051a011
  2. Chen, W, Kan, A.T., Newell, C.J., Moore, E., and Tomson, M.B., 2002, More realistic soil cleanup standards with dualequilibrium desorption, Ground Water, 40, 153-164 https://doi.org/10.1111/j.1745-6584.2002.tb02500.x
  3. Chiou, C.T., Porter, P.E., and Schmedding, D.W, 1983, Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter and Water, Environ. Sci. Technol., 227-231
  4. Clay, S.A., Allmaras, R.R, Koskinen, W.C., and Wyse, D.L., 1988, Desorption of Atrazine and Cyanazine from Soil, J. Environ. Qual., 17, 719-723 https://doi.org/10.2134/jeq1988.00472425001700040034x
  5. Clay, S.A. and Koskinen, W.C., 1990, Characterization of alachlor and atrazine desorption from soils, Weed Sci., 38, 74-80
  6. Connaughton, D.F., Stedinger, J.R., Lion, L.W, and Shuler, M.L., 1993, Description of time-varying desorption kinetics: Release of naphthalene from contaminated soils, Environ. Sci. Technol., 27, 2397-2403 https://doi.org/10.1021/es00048a013
  7. Cornelissen, G., Van Noort, P.C.M., and Govers, H.A.J., 1998, Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents, Environ. Sci. Technol., 32, 3124-3131 https://doi.org/10.1021/es970976k
  8. Garcia-Valcarcel, A.I., Matienzo, T., Sanchez-Brunete, C., and Tadeo, J.L., 1998, Adsorption of triazines in soils with low organic matter content, Fresenius Environ. Bull., 7, 649-656
  9. Gschwend, P.M. and Wu, S.C., 1985, On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants, Environ. Toxicol. Chem., 19, 90-96
  10. Hance, R.J., 1967, A relationship between partition data and the adsorption of some herbicides by soils, Nature, 214, 630-631 https://doi.org/10.1038/214630a0
  11. Heyse, E.C., Mika, D.J., de Venoge, T.P., Coulliette, D.L., and McGowin, A., 1999, General radial diffusion model for heterogeneous sorbents, Environ. Toxicol. Chem., 18, 1694-1700 https://doi.org/10.1897/1551-5028(1999)018<1694:GRDMFH>2.3.CO;2
  12. Jenks, B.M., Roeth, F.W., Martin, A.R., and McCallister, D.L., 1998, Influence of surface and subsurface soil properties on atrazine sorption and degradation, Weed Sci., 46, 132-138
  13. Johnson, M.D., Keinath, T.M., and Weber, W.J., 2001, A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates, Environ. Sci. Technol., 35, 1688-1695 https://doi.org/10.1021/es001391k
  14. Karickhoff, S.W., 1980, Sorption kinetics of hydrophobic pollutants in natural sediments, In: R.A. Baker (ed.), Contaminants and Sediments: Analysis, Chemistry, and Biology, Ann Arbor Press: Ann Arbor, MI. p. 193-205
  15. Khan, S.U., 1991, Bound (nonextractable) pesticide degradation products in soils, Am. Chem. Soc. Symp. Ser. 459. Am. Chem. Soc.. Washington, DC
  16. Kulikova, N.A. and Perminova, I.V., 2002, Binding of atrazine to humic substances from soil, peat, and coal related to their structure, Environ. Sci. Tech., 36, 3720-3724 https://doi.org/10.1021/es015778e
  17. Laird, D.A., Yen, P.Y., Koskinen, W.C., Steinheimer, T.R., and Dowdy, R.H., 1994, Sorption of Atrazine on Soil Clay Components, Environ. Sci. Tech., 28, 1054-1061 https://doi.org/10.1021/es00055a014
  18. Lambert, S.M., Porter, P.E., and Schieferstein, H., 1965, Movement and sorption of chemicals applied to the soil, Weeds, 13, 185-190 https://doi.org/10.2307/4041022
  19. Lambert, S.M., 1967, Functional relationship between sorption in soil and chemical structure, J. Agr. Food Chem., 15, 572-576 https://doi.org/10.1021/jf60152a024
  20. Leboeuf, E.J. and Weber, W.J., 2000, Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior, Environ. Sci. Techol., 34, 3632-3640 https://doi.org/10.1021/es991104g
  21. Lesan, H.M. and Bhandari, A., 2003, Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis, Water Res., 37, 644-1654
  22. Loehr, R.C. and Webster, M.T., 1996, Behavior of fresh vs aged chemicals in soil, J. Soil Contam., 5, 361-383 https://doi.org/10.1080/15320389609383535
  23. Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H., 1990, American Chemical Society, Washington, DC
  24. Ma, L., Southwick, L.M., Willis, G.H., and Selim, H.M., 1993, Hysteretic Characteristics of Atrazine Adsorption-Desorption by a Sharkey Soil, Weed Sci., 41, 627-633
  25. McCall, P.J. and Agin, G.L., 1985, Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxicol. Chem., 4, 37-44 https://doi.org/10.1897/1552-8618(1985)4[37:DKOPAA]2.0.CO;2
  26. Miller, C.T. and Pedit, J.A., 1992, Use of a Reactive Surface-Diffusion Model to Describe Apparent Sorption Desorption Hysteresis and Abiotic Degradation of Lindane in a Subsurface Material, Environ. Sci. Technol., 26, 1417-1427 https://doi.org/10.1021/es00031a021
  27. Park, J.-H., Zhao, X., and Voice, T.C., 2001, Biodegradation of Non-desorbable Naphthalene in Soils, Environ. Sci. Technol., 35, 2734-2740 https://doi.org/10.1021/es0019326
  28. Park, J.-H., Zhao, X., and Voice, T.C., 2002, Development of a kinetic basis for bioavailability of naphthalene in soil slurries, Water Res., 36, 1620-1628 https://doi.org/10.1016/S0043-1354(01)00360-8
  29. Park, J.-H., Feng, Y., Ji, P., Voice, T.C., and Boyd, S.A., 2003, Bioavailability Assessment of Soil-Sorbed Atrazine, Appl. Environ. Microbiol., 69, 3288-3298 https://doi.org/10.1128/AEM.69.6.3288-3298.2003
  30. Pignatello, J.J., 1990, Slowly reversible sorpiton of aliphatic halocarbons in soils. 1. formation of residual fractions, Environ. Toxicol. Chem., 9, 1107-1115 https://doi.org/10.1897/1552-8618(1990)9[1107:SRSOAH]2.0.CO;2
  31. Radosevich, M., Traina, S.J., and Tuovinen, O.H., 1997, Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria, J. Environ. Qual., 26, 206-214 https://doi.org/10.2134/jeq1997.00472425002600010030x
  32. Sharer, M., Park, J.-H., Voice, T.C.., and Boyd, S.A., 2003, Aging effects on the sorption/desorption characteristics of anthropogenic organic compounds in soil, J. Environ. Qual., 32, 1385-1392 https://doi.org/10.2134/jeq2003.1385
  33. Sheng, G.Y., Johnston, C.T., Teppen, B.J., and Boyd, S.A., 2001, Potential contributions of smectite clays and organic matter to pesticide retention in soils, J. Agric. Food Chem., 49, 2899-2907 https://doi.org/10.1021/jf001485d
  34. Weber, W.J. and Huang, W.L., 1996, A distributed reactivity model for sorption by soils and sediments .4. Intraparticle heterogeneity and phase- distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 30, 881-888 https://doi.org/10.1021/es950329y
  35. Xie, H., Guetzloff, T.F., and Rice, J.A., 1997, Fractionation of pesticide residues bound to humin, Soil Sci., 162, 421-429 https://doi.org/10.1097/00010694-199706000-00004
  36. Xing, B. and Pignatello, J.J., 1996, Time-dependent isotherm shape of organic compounds in soil organic matter: implications for sorption mechanism, Environ. Toxicol. Chem., 15, 1282-1288 https://doi.org/10.1897/1551-5028(1996)015<1282:TDISOO>2.3.CO;2
  37. Young, T.M. and Weber, W.J., 1995, A distributed reactivity model for sorption by soils and sediments. 3. Effect of diagenetic processes on sorption energetics. Environ. Sci. Technol, 29, 92-97 https://doi.org/10.1021/es00001a011