DOI QR코드

DOI QR Code

Histogram-based Selectivity Estimation Method in Spatio-Temporal Databases

시공간 데이터베이스를 위한 히스토그램 기반 선택도 추정 기법

  • 이종연 (충북대학교 컴퓨터교육과) ;
  • 신병철 (충북대학교 대학원 컴퓨터교육과)
  • Published : 2005.02.01

Abstract

The Processing domains of spatio-temporal databases are divided into time-series databases for moving objects and sequence databases for discrete historical objects. Recently the selectivity estimation techniques for query optimization in spatio-temporal databases have been studied, but focused on query optimization in time-series databases. There wat no previous work on the selectivity estimation techniques for sequence databates as well. Therefore, we construct T-Minskew histogram for query optimization In sequence databases and propose a selectivity estimation method using the T-Minskew histogram. Furthermore we propose an effective histogram maintenance technique for food performance of the histogram.

시공간 데이터베이스의 영역에는 그게 이동객체를 다루는 시계열 데이터베이스 영역과 이력객체를 다루는 서열 데이터베이스 영역으로 나뉜다. 최근에는 시공간 데이터베이스의 질의 최적화를 위한 선택도 추정 연구가 활발히 진행되었으나, 기존 연구는 주로 시계열 데이터베이스의 선택도 추정에 의한 질의 최적화에 중점을 두었고 서열 데이터베이스에 대한 질의 최적화 연구는 전무하였다. 따라서 본 논문에서는 시공간 데이터베이스의 질의 최적화를 위한 T-Minskew 히스토그램을 구축하고 이를 이용한 선택도 추정 기법을 제안한다. 또한 임계치 기법을 이용한 효과적인 히스토그램 유지 기법을 제안한다.

Keywords

References

  1. Tao, Y., Papadias, D., and Sun, J., 'The TPR*-tree : An Optimized Spatio-Temporal Access Method for Predictive Queries,' In Proceedings of the 29th Very Large Data Bases Conference, Berlin, Germany, pp.790-801, 2003
  2. Tao, Y. and Papadias, D., 'Time- Parameterized Queries in Spatio-Temporal Databases,' In Proceedings of ACM SIGMOD international conferences on Management of Data, pp.334-345, 2002 https://doi.org/10.1145/564691.564730
  3. Acharya, S., Poosala, V., and Ramaswamy, S., 'Selectivity Estimation in Spatial Databases,' In ACM SIGMOD, USA, pp.13-24, 1999 https://doi.org/10.1145/304182.304184
  4. Aboulnaga, A. and Naughton, J. 'Accurate Estimation of the Cost of Spatial Selections,' In ICDE, pp.123-134, 2000 https://doi.org/10.1109/ICDE.2000.839399
  5. Poosala V., Yannis E., Ioannidis, Peter J., Haas., and Eugene J. Shekita, 'Improved Histograms for Selectivity Estimation of Range Predicates,' In ACM SIGMOD, NY, USA, pp.294-305, 1996 https://doi.org/10.1145/233269.233342
  6. Wang, M., Vitter, J., S., Lim, L., and Pdmanabhan, S., 'Wavelet-Based Cost Estimation for Spatial Queries,' In the 7th International Sysposium on Spatial and Temporal Databases(SSTD), CA, USA, pp.175-196, July 2001
  7. Nikos Mamoulis and Dimitris Papadias, 'Selectivity Estimation of Complex Spatial Queries,' In the 7th International Sysposium on Spatial and Temporal Databases(SSTD), CA, USA, pp,156-174, July, 2001
  8. Choi, Y. and Chung, C., 'Selectivity Estimation for Spatio-Temporal Queries to Moving Objects,' In ACM SIGMOD, pp.440-451, 2002 https://doi.org/10.1145/564691.564742
  9. Tao, Y., Sun, J., and Papadias, O., 'Selectivity Estimation for Predictive Spatia-Temporal Queries,' ICDE, pp.417-428, 2003
  10. Hadjieleftheriou, M., Kollios, H., and Tsotras, V J., 'Performance Evaluation of Spatia-temporal Selectivity Estimation Techniques,' In the 15th Int. conference on Science and Statistical Database Management (SSDBM), pp.202-211, 2003
  11. Zhan, Q. and Lin, X., 'Clustering Moving Objects for Spatio-temporal Selectivity Estimation,' In ADC, pp.123-130, 2004
  12. Yossi Matias, Jeffrey Scott Vitter, and Min Wang, 'Wavelet-Based Histogram for Selectivity Estimation,' In Proceedings of ACM SIGMOD international conferences on Management of Data, pp.448-459, 1998 https://doi.org/10.1145/276304.276344
  13. Lee, J., Kim, D., and Chung, C., 'Multi-dimensional selectivity estimation using compressed histogram information,' In Proceeding of ACM SIGMOD international conferences on Management of Data, pp.205-214, 1999