Formalin Pretreatment Attenuates Tail-Flick Inhibition Induced by ${\beta}$-Endorphin Administered Intracerebroventricularly or Intrathecally in Mice

  • Han Ki-Jung (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Choi Seong-Soo (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Shim Eon-Jeong (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Seo Young-Jun (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Kwon Min-Soo (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Lee Jin-Young (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Lee Han-Kyu (Department of Pharmacology, College of Medicine and Institute of Natural Medicine) ;
  • Suh Hong-Won (Department of Pharmacology, College of Medicine and Institute of Natural Medicine)
  • Published : 2005.02.01

Abstract

We examined the effect of the subcutaneous (s.c.) pretreatment of formalin into both hind paws of mice on the antinociception induced by the intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administration of ${\beta}$-endorphin using the tail-flick test. Pretreatment with formalin ($5\%$) for 5 h had no affect on the i.c.v. administered ${\beta}$-endorphin-induced tail-flick response. However, pretreatment with formalin for 40 h attenuated the tail-flick inhibition induced by i.c.v. administered ${\beta}$-endorphin. This antinociceptive tolerance to i.c.v. ${\beta}$-endorphin continued up to 1 week, but to a lesser extent. Pretreatment with formalin for 5 and 40 h significantly reduced the i.t. ${\beta}$-endorphin-induced inhibition of the tail-flick response, which continued up to 1 week. The s.c. formalin treatment increased the hypothalamic pro-opiomelanocortin (POMC) mRNA level at 2 h, but this returned to the basal level after 40 h. Our results suggest that the increase in the POMC mRNA level in the hypothalamus appears to be involved in the supraspinal or spinal ${\beta}$-endorphin-induced antinociceptive tolerance in formalin-induced inflammatory pain.

Keywords

References

  1. Abdollahi, M., Nikfar, S., and Habibi, L., Saccharin effects on morphine-induced antinociception in the mouse formalin test. Pharmacol. Res., 42, 255-259 (2000) https://doi.org/10.1006/phrs.2000.0682
  2. Aloisi, A. M., Albonetti, M. E., Muscettola, M., Facchinetti, F., Tanganelli, C., and Carli, G., Effects of formalin-induced pain on ACTH, beta-endorphin, corticosterone and interleukin-6 plasma levels in rats. Neuroendocrinology, 62, 13-18 (1995) https://doi.org/10.1159/000126983
  3. Choi, S. S., Chung, K. M., Park, J. J., Lee, J. K., Song, D. K., Huh, S. O., Kim, Y. H., and Suh, H. W., Role of spinal c-Jun in the regulation of prodynorphin mRNA expression in intraplantar formalin injected rat. Exp. Neurobiol., 10, 9-16 (2001)
  4. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156-159 (1987) https://doi.org/10.1016/0003-2697(87)90021-2
  5. Chung, K. M. and Suh, H. W., Pretreatment with cholera or pertussis toxin differentially modulates morphine and betaendorphin- induced antinociception in the mouse formalin test. Neuropeptides, 35, 197-203 (2001) https://doi.org/10.1054/npep.2001.0862
  6. Connell, B. J., Barnes, J. C., Blatt, T., and Tasker, R. A., Rapid development of tolerance to morphine in the formalin test. Neuroreport, 5, 817-820 (1994) https://doi.org/10.1097/00001756-199403000-00020
  7. Crosby, G., Marota, J. J., Goto, T., and Uhl, G. R., Subarachnoid morphine reduces stimulation-induced but not basal expression of preproenkephalin in rat spinal cord. Anesthesiology, 81, 1270-1276 (1994) https://doi.org/10.1097/00000542-199409001-01269
  8. D'Amour, F. E. and Smith, D. L., A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther., 72, 74-79 (1941)
  9. Danielson, P. E., Forss-Petter, S., Brow, M. A., Calavetta, L., Douglass, J., Milner, R. J., and Sutchliffe, J. G., p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA, 7, 261-267 (1988) https://doi.org/10.1089/dna.1988.7.261
  10. Detweiler, D. J., Rohde, D. S., and Basbaum, A. I., The development of opioid tolerance in the formalin test in the rat. Pain, 63, 251-254 (1995) https://doi.org/10.1016/0304-3959(95)00051-S
  11. Haley, T. J. and McCormick, W. G., Pharmacological effects produced by intracerebral injections of drugs in the conscious mouse. Br. J. Pharmacol., 12, 12-15 (1957)
  12. Hammond, D. L., Wang, H., Nakashima, N., and Basbaum, A. I., Differential effects of intrathecally administered delta and mu opioid receptor agonists on formalin-evoked nociception and on the expression of Fos-like immunoreactivity in the spinal cord of the rat. J. Pharmacol. Exp. Ther., 284, 378-387 (1998)
  13. Hunskaar, S. and Hole, K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30, 103-114 (1987) https://doi.org/10.1016/0304-3959(87)90088-1
  14. Hylden, J. L. and Wilcox, G. L., Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol., 67, 313-316 (1980) https://doi.org/10.1016/0014-2999(80)90515-4
  15. Hylden, J. L. and Wilcox, G. L., Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res., 217, 212-215 (1981) https://doi.org/10.1016/0006-8993(81)90203-1
  16. Kamei, J., Hitosugi, H., Misawa, M., Nagase, H., and Kasuya, Y., Delta-opioid receptor-mediated forced swimming stressinduced antinociception in the formalin test. Psychopharmacology (Berl), 113, 15-18 (1993) https://doi.org/10.1007/BF02244327
  17. Kopchick, T. T., Cullen, R., and Stacey, D. W., Rapid analysis of small nucleic acid samples by gel electrophoresis. Anal. Biochem., 115, 419-423 (1981) https://doi.org/10.1016/0003-2697(81)90027-0
  18. Narita, M. and Tseng, L. F., Evidence for the existence of the beta-endorphin-sensitive 'epsilon-opioid receptor' in the brain: the mechanisms of epsilon-mediated antinociception. Jpn. J. Pharmacol., 76, 233-253 (1998) https://doi.org/10.1254/jjp.76.233
  19. Noguchi, K., Morita, Y., Kiyama, H., Sato, M., Ono, K., and Tohyama, M., Preproenkephalin gene expression in the rat spinal cord after noxious stimuli. Brain Res. Mol. Brain. Res., 5, 227-234 (1989) https://doi.org/10.1016/0169-328X(89)90039-9
  20. Onodera, K., Sakurada, S., Furuta, S., Yonezawa, A., Arai, K., Hayashi, T., Katsuyama, S., Sato, T., Miyazaki, S. and Kisara, K., Differential involvement of opioid receptors in stress-induced antinociception caused by repeated exposure to forced walking stress in mice. Pharmacology, 61, 96-100 (2000) https://doi.org/10.1159/000028387
  21. Suh, H. H. and Tseng, L. F., Intrathecal administration of thiorphan and bestatin enhances the antinociception and release of Met-enkephalin induced by beta-endorphin given intraventricularly in anesthetized rats. Neuropeptides, 16, 91- 96 (1990) https://doi.org/10.1016/0143-4179(90)90117-H
  22. Takahashi, N., Hayano, T., and Suzuki, M., Peptidyl-prolyl cistrans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 337, 473-475 (1989) https://doi.org/10.1038/337473a0
  23. Tanimoto, M., Fukuoka, T., Miki, K., Tokunaga, A., Tashiro, C., and Noguchi, K., Effects of halothane, ketamine and nitrous oxide on dynorphin mRNA expression in dorsal horn neurons after peripheral tissue injury. Brain Res., 811, 88-95 (1998) https://doi.org/10.1016/S0006-8993(98)00987-1
  24. Tseng, L. F., Evidence for epsilon-opioid receptor-mediated beta-endorphin-induced analgesia. Trends Pharmacol. Sci., 22, 623-629 (2001) https://doi.org/10.1016/S0165-6147(00)01843-5
  25. Tseng, L. F., Mechanism of beta-endorphin-induced antinociception. In: L.F. Tseng (Ed.), The Pharmacology of Opioid Peptides. Harwood Academic Publisher, Singapore, pp. 249-269, (1995)
  26. Uhler, M. and Herbert, E., Complete amino acid sequence of mouse pro-opiomelanocortin derived from the nucleotide sequence of pro-opiomelanocortin cDNA. J. Biol. Chem., 258, 257-261 (1983)
  27. Wheeler-Aceto, H., Porreca, F., and Cowan, A., The rat paw formalin test: comparison of noxious agents. Pain, 40, 229- 238 (1990) https://doi.org/10.1016/0304-3959(90)90073-M
  28. Yang, Z. J., Tang, J. S., and Jia, H., Morphine microinjections into the rat nucleus submedius depress nociceptive behavior in the formalin test. Neurosci. Lett., 328, 141-144 (2002) https://doi.org/10.1016/S0304-3940(02)00514-1
  29. Zarrindast, M. R., Shaverdian, S., and Sahebgharani, M., Effect of imipramine on tolerance to morphine antinociception in the formalin test. Pharmacol. Toxicol., 87, 131-137 (2000) https://doi.org/10.1111/j.0901-9928.2000.870306.x