Antinociceptive Effect of Nicotine in Various Pain Models in the Mouse

  • Han Ki-Jung (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Choi Seong-Soo (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Lee Jin-Young (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Lee Han-Kyu (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Shim Eon-Jeong (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Kwon Min Soo (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Seo Young-Jun (Department of Pharmacology and Institute of Natural Medicine, Hallym University) ;
  • Suh Hong-Won (Department of Pharmacology and Institute of Natural Medicine, Hallym University)
  • Published : 2005.02.01

Abstract

The antinociceptive effect of nicotine administered intracereboventricularly (i.c.v.) or intrathecally (i.t) in several pain models was examined in the present study. We found that i.t. treatment with nicotine (from 5 to 20 g) dose-dependently blocked pain behavior revealed during the second phase, but not during the first phase in the formalin test. In addition, i.c.v. treatment with nicotine (from 0.1 to $10\;{\mu}g$) dose-dependently attenuated pain behavior revealed during both the first and second phases. In addition to the formalin test, nicotine administered i.c.v. or i.t. attenuated acetic acid-induced writhing response. Furthermore, i.c.v. or i.t. administration of nicotine did not cause licking, scratching and biting responses induced by substance P, glutamate, TNF-${\alpha}$(100 pg), IL-$1{\beta}$(100 pg) and INF-${\gamma}$ (100 pg) injectied i.t. The antinociception induced by supraspinally-administered nicotine appears to be more effective than that resulting from spinally administered nicotine. Our results suggest that nicotine administration induces antinociception by acting on the central nervous system and has differing antinociceptive profiles according to the various pain models.

Keywords

References

  1. Abbott, F., Franklin, K., Ludwick, R., and Melzack, R., Apparent lack of tolerance in the formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol. Biochem. Behav., 15, 637 (1981) https://doi.org/10.1016/0091-3057(81)90222-7
  2. Aceto, M. D., Bagley, R. S., Dewey, W. L., Fu, T. C., and Martin, B. R., The spinal cord as a major site for the antinociceptive action of nicotine in the rat. Neuropharmacology, 25, 1031 (1986) https://doi.org/10.1016/0028-3908(86)90198-X
  3. Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M., and Saremi, S., Antinociceptive and antiinflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol., 72, 287 (2000) https://doi.org/10.1016/S0378-8741(00)00222-1
  4. Bannon, A. W., Decker, M. W., Kim, D. J., Campbell, J. E., and Arneric, S. P., ABT-594, a novel cholinergic channel modulator, is efficacious in nerve ligation and diabetic neuropathy models of neuropathic pain. Brain Res., 801, 158 (1998) https://doi.org/10.1016/S0006-8993(98)00596-4
  5. Benowitz, N. L. and Jacob, P. 3rd, Nicotine metabolism in nonsmokers. Clin. Pharmacol. Ther., 48, 473 (1990)
  6. Castane, A., Valjent, E., Ledent, C., Parmentier, M., Maldonado, R., and Valverde, O., Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology, 43, 857 (2002)
  7. Choi, S. S., Lee, J. K., and Suh, H. W., Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models. Brain Res., 921, 233 (2001) https://doi.org/10.1016/S0006-8993(01)03063-3
  8. Chung, K. M., Lee, K. C., Choi, S. S., and Shu, H. W., Differential roles of spinal cholera toxin- and pertussis toxinsensitive G proteins in nociceptive responses caused by formalin, capsaicin, and substance P in mice. Brain Res. Bull., 537 (2001a) https://doi.org/10.1016/S0361-9230(01)00441-5
  9. Chung, K. M., Lee, K. C., Choi, S. S., and Suh, H. W., Differential roles of spinal cholera toxin- and pertussis toxin sensitive G proteins in nociceptive responses caused by formalin, capsaicin and substance P in mice. Brain Res. Bull., 54, 537 (2001b)
  10. Clavelou, P., Callel, R., Orliaguet, T., Woda, A., and Raboisson, P., The orofacial formalin test in rats: effects of different formalin concentrations. Pain, 62, 295 (1995) https://doi.org/10.1016/0304-3959(94)00273-H
  11. Cumberbatch, M., Herrero, J., and Headley, P., Exposure of rat spinal neurones to NMDA, AMPA and kainate produces only short-term enhancements of responses to noxious and nonnoxious stimuli. Neurosci. Lett., 181, 98 (1994)
  12. Damaj, M. I., Fei-Yin, M., Dukat, M., Glassco, W., Glennon, R. A., and Martin, B. R., Antinociceptive responses to nicotinic acetylcholine receptor ligands after systemic and intrathecal administration in mice. J. Pharmacol. Exp. Ther., 284, 1058 (1998)
  13. DeLeo, J., Colburn, R., and Rickman, A., Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropethy. Brain Res., 759, 50 (1997)
  14. Falchi, M., Ferrara, F., Gharib, C., and Dib, B., Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res., 27, 97 (2001)
  15. Ferreira, J., Santos, A., and Calixto, J., The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology, 38, 835 (1999)
  16. Gamae, R. and Saria, A., Nociceptive behavior after intrathecal injections of substance P, neurokinin A and calcitonin generelated peptide in mice. Neurosci. Lett., 70, 143 (1986) https://doi.org/10.1016/0304-3940(86)90453-2
  17. Haley, T. J. M. W., Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol., 12, 12 (1957)
  18. Hopkins, S. J. and Rothwell, N. J., Cytokines and the nervous system: I. Expression and recognition. Trends Neurosci., 18, 83 (1995) https://doi.org/10.1016/0166-2236(95)93881-W
  19. Hunskaar, S., Fasmer, O., and H. K., Formalin test in mice, a useful technique for evaluating mild analgesics. J. Neurosci. Methods, 14, 69 (1985)
  20. Hunskaar, S. and H. K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30, 103 (1987) https://doi.org/10.1016/0304-3959(87)90088-1
  21. Hunskaar, S., Post, C., Fasmer, O., and Arwestrom, E., Intrathecal injection of capsaicin can be used as a behavioural nociceptive test in mice. Neuropharmacology, 25, 1149 (1986)
  22. Hylden Jl, W. G., Intrathecal morphine in mice: a new technique. Euro J. Psychopharmacology, 67, 313 (1980)
  23. Hylden Jl, W. G., Intrathecal substance P elicits a caudallydirected biting and scratching behavior in mice. Brain Res., 217 (1981)
  24. Kidd, B. L. and Urban, L. A., Mechanisms of inflammatory pain. Br. J. Anaesth, 87, 3 (2001) https://doi.org/10.1093/bja/87.1.1
  25. Koster, R., Anderson, M., and Beer, E. J., Acetic acid for analgesic screening. Federal proceeding, 18, 412 (1959)
  26. Maleki, N., Garjani, A., Nazemiyeh, H., Nilfouroushan, N., Sadat, A. E., Allameh, Z., and Hasannia, N., Potent antiinflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. J. Ethnopharmacol., 75, 213 (2001) https://doi.org/10.1016/S0378-8741(00)00348-2
  27. Mattila, M. J., Ahtee, L., and Saarnivaara, L., The analgesic and sedative effects of nicotine in white mice, rabbits and golden hamsters. Ann. Med. Exp. Biol. Fenn., 46, 78 (1968)
  28. Perkins, K. A., DiMarco, A., Grobe, J. E., Scierka, A., and Stiller, R. L., Nicotine discrimination in male and female smokers. Psychopharmacology (Berl) ,116, 407 (1994)
  29. Phan, D. V., Doda, M., Bite, A., and Gyorgy, L., Antin ociceptive activity of nicotine. Acta. Physiol. Acad. Sci. Hung., 44, 85 (1973)
  30. Puig, S. and Sorkin, L. S., Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain, 64, 345 (1996) https://doi.org/10.1016/0304-3959(95)00121-2
  31. Rashid, M. and Ueda, H., Neuropathy-specific analgesic action of intrathecal nicotinic agonists and its spinal GABAmediated mechanism. Brain Res., 953, 53 (2002)
  32. Rau, H., Schweizer, R., Zhuang, P., Pauli, P., Brody, S., Larbig, W., Heinle, H., Muller, M., Elbert, T., and Dworkin, B., Cigarette smoking, blood lipids, and baroreceptor-modulated nociception. Psychopharmacology (Berl), 110, 337 (1993) https://doi.org/10.1007/BF02251290
  33. Reeve, A. J., Patel, S., Fox, A., Walker, K., and Urban, L., Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain, 4, 247 (2000)
  34. Riedel, W. and Neeck, G., Nociception, pain, and antinociception: current concepts. Z. Rheumatol., 163, 404 (2001) https://doi.org/10.1007/s003930170003
  35. Schafers, M., Geis, C., Brors, D., Yaksh, T., and Sommer, C., Anterograde transport of tumor necrosis factor-alpha in the intact and injured rat sciatic nerve. J. Neurosci., 22, 536 (2002)
  36. Shibata, M., Ohkubo, T., Takahashi, H., and Inoki, R., Modified formalin test: characteristic biphasic pain response. Pain, 38, 347 (1989) https://doi.org/10.1016/0304-3959(89)90222-4
  37. Sommer, C., Lindenlaub, T., Teuteberg, P., Schafers, M., Hartung, T., and Toyka, K., Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res., 913, 86 (2001b)
  38. Sommer, C., Schafers, M., Marziniak, M., and Toyka, K., Etanercept reduces hyperalgesia in experimental painful neuropathy. J. Peripher. Nerv. Syst., 6, 67 (2001a) https://doi.org/10.1046/j.1529-8027.2001.006001001.x
  39. Vyklicky, L., Bonica, J. J., Liebeskind, J. C., and Albe-Fessard, D. G., Advances in pain Research and Therapy. Adv. Pain Res. The., 3, 727 (1979)
  40. Wagner, R., Myers, R., and O'Brien, J., Prosaptide prevents hyperalgesia and reduces peripheral TNFR! expression following TNF-alpha nerve injection. Neuroreport, 9, 2827 (1998) https://doi.org/10.1097/00001756-199808240-00026
  41. Xu, X. J. H., J. Olsson, T. Kristensson, K. Van Der Meide, P. H., and Wiesenfeld Hallin H. Z., Intrathecal interferon-gamma facilitates the spinal nociceptive flexor reflex in the rat. Neurosci. Lett., 182, 263 (1994) https://doi.org/10.1016/0304-3940(94)90812-5
  42. Zarrindast, M., Potentiation of imiprmine-induced antinociception by nicotine in the formalin test. European Neuropsychopharmacology, 14, 71 (2003)