비선형 특징투영 기법을 이용한 웨이블렛 기반 근전도 패턴인식

A Wavelet-Based EMG Pattern Recognition with Nonlinear Feature Projection

  • Chu Jun-Uk (Korea Orthopedics & Rehabilitation Engineering Center) ;
  • Moon Inhyuk (Korea Orthopedics & Rehabilitation Engineering Center)
  • 발행 : 2005.03.01

초록

본 논문에서는 다기능 근전의수를 제어하기 위해 전완에서 취득한 4 채널의 근전도로부터 9 가지 동작을 인식하는 새로운 방법을 제안한다. 비정상 신호특성을 가진 근전도를 해석하기 위해서 시간-주파수 영역에서 표현되는 특징벡터를 웨이블렛 패킷변환을 통해 추출한다. 높은 차원을 가지는 시간-주파수 특징벡터에 대하여 차원축소와 비선형변환을 수행하기 위해 PCA와 SOFM으로 구성된 특징투영 방법을 제안한다. PCA를 이용한 차원축소는 패턴분류기의 구조를 단순화하고 패턴인식을 위한 계산시간을 단축할 수 있다. SOFM을 이용한 비선형변환은 PCA에 의해 차원이 축소된 특징벡터를 새로운 공간으로 투영함으로써 클래스 분리도를 향상시킨다. 마지막으로 각 동작은 패턴분류기인 다층 신경회로망에 의해 인식된다. 실험 결과로부터 제안한 방법이 높은 인식률을 보임과 동시에 연속적인 패턴인식을 위한 실시간 구현이 가능함을 보인다.

This paper proposes a novel approach to recognize nine kinds of motion for a multifunction myoelectric hand, acquiring four channel EMG signals from electrodes placed on the forearm. To analyze EMG with properties of nonstationary signal, time-frequency features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. From experimental results, we show that the proposed method enhances the recognition accuracy, and makes it possible to implement a real-time pattern recognition.

키워드

참고문헌

  1. OttoBock HealthCare, MYOBOCK Arm Components 2004, 2004
  2. S. C. Jacobson, D. F. Knutti, R. T. Johnson, and H. H. Sears, 'Development of the Utah artificial arm,' IEEE Trans. Biomed. Eng., vol. 29, pp. 249-2697, April 1982 https://doi.org/10.1109/TBME.1982.325033
  3. B. Hudgins, P. A. Parker, and R. N. Scott, 'A new strategy for multifunction myoelectric control,' IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82-94, January 1993 https://doi.org/10.1109/10.204774
  4. F. H. Y. Chan, Y. S. Yang, F. K. Lam, Y. T. Zhang, and P. A. Parker, 'Fuzzy EMG classification for prosthesis control,' IEEE Trans. Rehab. Eng., vol. 8, no. 3, pp. 305-311, September 2000 https://doi.org/10.1109/86.867872
  5. H. P. Huang, Y. H. Liu, L. W. Liu, and C. S. Wong, 'EMG classification for prehensile posture using cascaded architecture of neural networks with self-organizing maps,' IEEE Int'l. Conf. Robotics and Automation, pp. 1497-1502, September 2003 https://doi.org/10.1109/ROBOT.2003.1241803
  6. A. Hiraiwa, N. Uchida, N. Sonehara, and K. Shimohara, 'EMG Pattern Recognition by Neural networks for Prosthetic Fingers Control - Cyber Finger,' Proc. Int'l. Symp. Measurement and control in Robotics, pp. 535-542, November 1992
  7. S. H. Park and S. P. Lee, 'EMG Pattern Recognition Based on Artificial Intelligence Techniques,' IEEE Trans. Rehab. Eng., vol. 6, no. 4, pp. 400-405, December 1998 https://doi.org/10.1109/86.736154
  8. K. Englehart, B. Hudgins, Philip A. Parker, and M. Stevenson, 'Classification of the myoelectric signal using time-frequency based representations,' Medical Engineering and Physics, vol. 21, pp. 431-438, 1999 https://doi.org/10.1016/S1350-4533(99)00066-1
  9. K. Englehart, B. Hudgins, and Philip A. Parker, 'A wavelet-based continuous classification scheme for multifunction myoelectric control,' IEEE Trans. Biomed. Eng., vol. 48, no. 3, pp. 302-311, March 2001 https://doi.org/10.1109/10.914793
  10. K. Englehart and B. Hudgins, 'A robust, real-time control scheme for multifunction myoelectric control,' IEEE Trans. Biomed. Eng., vol. 50, no. 7, pp. 848-854, July 2003 https://doi.org/10.1109/TBME.2003.813539
  11. Jeffrey R. Cram and Clenn S. Kasman, Introduction to surface eletromyography, An Aspen Publication, Maryland, 1998
  12. C. J. De Luca, 'Surface electromyography: Detection and recording,' Delsys Incorporated, 2002
  13. http://www.delsys.com
  14. N. Saito and R. R. Coifman, 'Local discriminant bases and their applications,' J. Mathematical Imaging and Vision, vol. 5, no. 4, pp. 337-358, 1995 https://doi.org/10.1007/BF01250288
  15. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, New Jersy, 1999
  16. T. Kohonen, 'The self-organizing map', Proc. of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990 https://doi.org/10.1109/5.58325
  17. Stephane G. Mallat, 'A theory for multire-solution signal decomposition: The wavelet representation,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989 https://doi.org/10.1109/34.192463