DOI QR코드

DOI QR Code

Convergence of Interval-valued Choquet integrals

  • Hong Dug-Hun (Department of Mathematics, Myongji University) ;
  • Kim Kyung-Tae (Department of Electronics and Electrical Information Engineering, Kyungwon University)
  • Published : 2005.09.01

Abstract

Recently, many types of set-valued fuzzy integrals are studied by many authors. In this paper, we consider various types of convergence theorems of Choquet integrals of interval-valued function with respect to an autocontinuous fuzzy measure.

Keywords

References

  1. J. Aubin, Set-valued analysis, Birkauser Boston, 1990
  2. R. J. Aumann, 'Integrals of set-valued functions,' J. Math. Appl. Vol. 12, pp. 1-12, 1965
  3. L. M. de Campos and M. J.Bolanos, 'Characterization and comparison of Sugeno and Choquet integrals,' Fuzzy Sets and Systems, Vol. 52, pp. ,61-67, 1992 https://doi.org/10.1016/0165-0114(92)90037-5
  4. G. Choquet, 'Theory of capacities, Ann. Inst. Fourior,' Vol. 5, pp. 131-295, 1953
  5. F. Hiai and H. Umegaki, 'Integrals, conditional expectations, and martingales of multi-valued functions,' J. Multi. Analysis, Vol. 7, pp. 149-182, 1977 https://doi.org/10.1016/0047-259X(77)90037-9
  6. D. H. Hong, 'Convergence of Choquet integral, J. Appl Math. and Computing,' Vol. 18, pp. 613-619, 2005
  7. L. C. Jang, B. M. Kil, Y. K. Kim and J. S. Kwon, 'Some properties of Choquet integrals of set-valued functions,' Fuzzy Sets and Systems, Vol. 91, pp. 95-98, 1997 https://doi.org/10.1016/S0165-0114(96)00124-8
  8. L. C. Jang and J. S. Kwon, 'On the representation of Choquet integrals of set-valued functions and null sets,' Fuzzy Sets and Systems, Vol. 112, pp. 233-239, 2000 https://doi.org/10.1016/S0165-0114(98)00184-5
  9. L. C. Jang and T. Kim, 'On set-valued Choquet integrals and convergence theorems (I),' Advan. Stud. Contemp. Math. Vol. 6 No. 1, 2003
  10. L. C. Jang, T. Kim and J. D. Jeon, 'On set-valued Choquet integrals and convergence theorem(II),' Bull. Korean Math. Soc. Vol. 40, pp. 139-147, 2003 https://doi.org/10.4134/BKMS.2003.40.1.139
  11. T. Murofushi and M. Sugeno, 'An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure,' Fuzzy Sets and Systems, Vol. 29, pp. 201-227, 1989 https://doi.org/10.1016/0165-0114(89)90194-2
  12. T. Murofushi and M. Sugeno, 'A theory of Fuzzy measures: representations, the Choquet integral, and null sets,' J. Math. Anal. and Appl. Vol. 159, pp. 532-549, 1991 https://doi.org/10.1016/0022-247X(91)90213-J
  13. T. Murofushi, M. Sugeno and M. Suzaki, 'Autocontinuity, convergence in measure, and convergence in distribution,' Fuzzy sets and Systems, Vol. 92, pp. 197-203, 1997 https://doi.org/10.1016/S0165-0114(97)00170-X
  14. P. Pucci and G. Vitillaro, 'A representation theorem for Aumann integrals,' J. Math. Anal. and Apple. Vol. 102, pp. 86-101, 1984 https://doi.org/10.1016/0022-247X(84)90204-X
  15. Z. Wang and G. J. Klir, Fuzzy measure theory, Plenum Press, 1992
  16. C. Wu, D. Zhang, C. Guo, and C. Wu, 'Fuzzy number fuzzy measures and fuzzy integrals.(I). Fuzzy integrals of functions with respect to fuzzy number fuzzy measures,' Fuzzy Sets and Systems, Vol. 98 (1998), pp. 355-360 https://doi.org/10.1016/S0165-0114(96)00394-6
  17. D. Zhang and Z. Wang, 'On set-valued fuzzy integrals,' Fuzzy Sets and Systems, Vol. 56, pp. 237-241, 1993 https://doi.org/10.1016/0165-0114(93)90149-C