Hx ¥ XsA2"sts] =F2X 2005 Vol 15 No. 5 pp. 615-620

Application of Consensus Algorithm to Mate’ for Identifying
Faulty Sensor Node in Sensor Networks

Sung-Ho Kim®, Hyeong-Joo Kim"*, Yun-Jong Han®, Diaconescu Bogdana®

*School of Electronics and Information Engineering, Kunsan National University
*+ School of Civil and Environmental Engineering, Kunsan National University

Abstract

Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their
limited resources, there will often be some faulty nodes within the network. As nodes in some certain regions rely on
each other to route the information gathered by different sensors to a base station (sink), the network should be able
to detect a non-operational node in order to determine new paths for routing the information. Failure detection, which
identifies the faulty nodes, is rather necessary in sensor networks and a very important research issue. The detection
of a non-operational node can be performed using Consensus Algorithm with the purpose of achieving agreement
about a node which is supposed to be faulty (non-operational). In this work, we discuss the application of a
Consensus Algorithm to sensor node called "mote”. Our experimental results show that it works efficiently for identi-

fying faulty nodes in sensor networks.
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1. Introduction

Recent development in wireless communication and
micro-electro-mechanical systems technology have en-
abled the deployment of sensor networks consisting of
small, low-cost, low-power and multi—functional sensor
nodes with sensing, computation and communication
capabilities. These features make sensor networks suited
for a wide range of applications: environmental and hab—
itat monitoring, seismic detection, military surveillance,
etc.

Recently, a tiny sensor node called "mote” was devel-
oped for sensor networks by the Computer Science
Division of University of California, Berkeley. It has
several platforms depending on the types of
microprocessors. TinyOS which was developed for sen-—
sor network is installed on mote. TinyOS provides high
parallelism and efficiency through a somewhat tricky
programming interface. This interface is badly suited to
non-expert programmers, such as the biologists and civil
engineers. A simpler programming model, which allows
novice programmers to express their desired behavior
without worrying about timing and asynchrony, would
greatly improve the usefulness of mote. To achieve this
goal, Mate’, which is a byte-code interpreter running on
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TinyOS, was developed. Mate’ is a single TinyOS com-
ponent that sits on top of several system components,
including sensors and the network stack.

In the past years, many researchers in the field of
sensor network have focused their attention on data ag-
gregation, routing protocols and energy-efficient MAC
protocol [1-2]. However, there is room for many other
important research issues to be addressed. Generally,
sensor nodes are more likely to have problems or die out
due to many different reasons: their batteries may be
depleted or they may be accidentally destroyed. These
faulty nodes can cause many problems such as deterio—
ration of sensor network performance. Therefore, it is
critical for the base station (sink) to find out whether a
node is operational or not and more precisely, which
node is non-operational. Many researchers have proposed
different approaches for identifying faulty nodes. One of
these approaches advocates the Consensus Algorithm. It
requires each node to maintain its own view regarding
the status of the other nodes and also monitor the suspi—
cions of all other fault-free nodes[3].

In this work, to improve the functionality of
TinyOS-based sensor node called "mote”, a simple
Consensus Algorithm for identifying faulty nodes is im-
plemented on Mate’. The paper is organized as follows:
Section 2 describes a tiny virtual machine for sensor
networks Section 3 describes the concept of Consensus
Algorithm and Section 4 describes the experimental ap-
plication of Consensus Algorithm on Mate’. Finally,
Section 5 shows results.
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2. Virtual Machine for Mote

TinyOS for sensor networks provides high parallelism
and efficiency through a somewhat tricky programming
interface, badly suited to non-expert programmers.
Furthermore, as wireless sensor networks must be
re-programmable in response to changing needs (simple
parameter adjustments, the upload of complete binary
images), a concise way to represent a wide range of
programs is needed. For this, Mate’ which allows novice
programmers to express their desired behavior without
worrying about timing and asynchrony was developed to
improve the usefulness of mote.

2.1 Hardware platform for Mate’

Many hardware platforms are currently available for
designing of sensor nodes . Motes hardware platforms
which use TinyOS as an operating system were devel-
oped by the Computer Science Division from University
of California, Berkeley. In this work, mote based on
ATMega 128 microprocessor was developed for our ex—
periment as in fig.l. ATMegal28 is a low-power mi—
cro—-controller which runs TinyOS from its internal flash
memory. Using TinyOS, a single processor board can be
configured to run a certain sensor application/processing
and the network/radio communication stack
simultaneously. Qur board supports analog input port,
digital I/O and UART interfaces. These interfaces make
it easy to connect to a wide variety of external
peripherals.

Fig.1. Sensor node based on ATMega 128
MICroprocessor

The developed sensor node supports 40Kbit communi—
cation on its radio. The radio can be put into 10 Kbit
mode for backwards compatibility. All mote platforms
are Harvard architectures with separate instruction and
data memory. Installing new binary code requires a reset
to take effect. To change the behaviour of a TinyOS
program, one must either hard code (revise) a state
transition in a program (upon receiving a type of packet,
start reading light instead of temperature), or one must
modify source code, recompile a TinyOS image and place
the entire new image on a mote.

2.2 Mate’

Mate’ which is a tiny communication—centric virtual
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machine was developed. It is a byte-code interpreter that
runs on TinyOS and that can be thought of as a single
TinyOS component that sits on top of several system
components, including sensors, the network stack and a
non-volatile storage. Code is broken in capsules of 24
instructions, each of which is a single byte long (this
limit allows a capsule to fit into a single TinyOS pack-
et); larger programs can be composed of multiple
capsules. In addition to byte codes, capsules contain
identifying and version information. It has a stack-based
architecture which allows a concise instruction set; most
instructions do not have to specify operands, as they ex-
ist on the operand stack. There are three classes of Mate
instructions: basic, s—class and X-class. Mate has two
stacks: an operand stack and a return address stack as
shown in figure 2. The operand stack has a maximum
depth of 16 while the call stack has a maximum depth of
8. Most instructions operate solely on the operand stack,
but a few instructions control program flow and several
have embedded operands. There are three execution con-
texts that can run concurrently. Each context has its
own stack: the operand stack and the return address
stack. The operand stack is used for all instructions
handling data and the return address stack is used for
subroutine calls. There are three operand types: values,
sensor readings and messages. Some instructions can
only operate on certain types[6]. However, many in-
structions are polymorphic. For example, some in-
structions can be used to add any combination of the
types, with different results. Mate capsules can forward
themselves through a network with a single instruction.
A capsule sent in a packet contains a type and a version
number. If Mate receive a more recent version capsule, it
installs it, otherwise the capsule is discarded. After in-
stalling the capsule, this is transmitted to other motes
using the forw instruction. Mate provides both a built-in
ad-hoc routing algorithm (the send instruction) as well
as mechanisms for writing new ones (the send in-
struction). Mate and all its subcomponents must fit in 1
KB of RAM and 16 KB of instruction memory.
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Fig.2. Mate' architecture and execution model: Capsules,
Contexts and Stacks
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3. Consensus algorithm in sensor network

Sensor nodes are densely deployed in the field in vari-
ous ways. The nodes are linked by a wireless medium,
using a multi-hop routing protocol to communicate with
each other. Generally, sensor nodes are prone to failures
due to their limited resources or environmental influence.
The failure of sensor nodes should not affect the overall
task of the sensor network. In order to get consistent
failure detection, it is necessary for all nodes to come to
an agreement on the status of a faulty node through dis-
covery and notification. Formally stated, the Consensus
Algorithm is defined as the process by which agreement
is reached among the fault-free sensor nodes in order to
maintain the performance and integrity of the system.
This section describes an algorithm in which consensus
is reached when each fault-free node in the network re-
alizes that all the fault-free nodes have detected a faulty
node.

The Consensus Algorithm requires each node to not
only maintain its own view regarding the status of the
other nodes and also monitors the suspicions of all other
fault-free nodes. To achieve these goals, each node in a
network of n nodes maintains an n x n suspect matrix S
and a fault vector F. The element Sl[i, j] is set to 1 if
node i suspects node j of being faulty. Otherwise it is
set to 0. Consensus is reached when a given column of
S contains a 1 for all i corresponding to a fault-free
node. The fault-free nodes are monitored maintaining a
fault vector F at each node. Element j of F is set to 1
only if all the other fault-free nodes suspect it to be
faulty. The logical OR operation between S and F is
performed and consensus is reached when the result of
OR operation produce a bit array in which all the ele-
ments are 1. For simplification, the principle of
Consensus Algorithm is explained for a small 4-node
network as in fig. 3.
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Fig.3. The Principle of Consensus Algorithm for a
4-node network

Stepl: the suspect matrix of node 1 shows that it

suspects node 0 to be faulty (non-operational). Node 2
also suspects node 0 to be faulty (non-operational) and it
received a suspect matrix from node 3 with the same
supposition.

Step 2! node 1 send its suspect matrix to node 2
which performs a logical OR operation, merges the two
matrices. At this moment node 2 "notice” that all
fault~free nodes suspect node 0 to be faulty.

Step 3 node 2 detects that consensus has been
reached since all fault-free nodes detect the failure of
node 0. The fault vector F is updated, the value corre-
sponding to node 0 is set to 1.

Next step, performed by node 2, is to multicast a
message (indicating that consensus has been reached) to
nodes 1 and 3 and performs operations required for the
network reconfiguration (looking for new paths of rout-
ing the information).

The detailed procedure for consensus algorithm is
shown in fig. 4.
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Fig. 4. Flow chart of Consensus algorithm

4. Application of Consensus Algorithm to
Mate’

This section wishes to describe the implementation of
Consensus Algorithm to Mate’ in order to identify faulty
nodes in sensor networks. The top-level TinyOS packet
abstraction is an Active Message (AM). The character-
istics of AM are very important because they define the
capabilities of systems built on top of it. AM can be
seen as an asynchronous communication mechanism in-
tended to expose the full hardware flexibility and per—
formance of modern interconnection networks. AM model
was originally designed for a large-scale multi-
processors, but the limited power, memory and computa—
tional capacities of the sensor mote make it appropriate
for TinyOS. The TinyOS networking stack handles me-
dia access control and single hop communication be-

617



mHX ¥ XsAA-EE =FX 2005, Vol. 15, No. 5

tween motes. Higher layer protocols (e.g. network or
transport) are built on top of the AM interface. AM
packets can be sent to a specific mote (addressed with a
16 bit ID) or to a broadcast address ( Oxffff). TinyOS
provides a name space for up to 256 types of Active
Messages, each of which can be associated with a dif-
ferent software handler. The underlying idea is simple:
each message contains the address of a user-level han-
dler as header. The role of the handler is to get the mes-
sage out of the network and enter the computation run-
ning on the processing node [7]. AM types allow multiple
network or data protocols to operate concurrently without
conflict. The AM layer also provides the abstraction of
an 8-bit AM group; this allows logically separate sensor
networks to be physically co-present but mutually in-
visible, even if they run the same application. AM, as
asynchronous communication mechanism, exposes the
hardware flexibility. In TinyOS, the original AM packet
is TOS_Msg and all the other message types are encap—
sulated in it.
The structure of the TOS_Msg is shown in fig. 5.

typedef struct TOS_Msg
{

uintl6_t addr;
uint8_t type;
uint8_t group;
uint8_t length
int8_t datal TOSH_DATA_LENGTH]
uintl6_t crc;
uintl6_t strength;
uint8_t ack
uintl6_t time
} TOS_Msg

Fig. 5. Structure of TOS message

The message is "active” because it contains destina—
tion address, group ID and type.

The addr field specifies the destination address (a
mote ID or the broadcast address).

The group field specifies a channel for motes on a
network (if a mote receives a packet with a different
group ID, the packet is discarded).

The type field specifies which handler to be called at
the AM level when the packet is received.

The length field specifies the length of the data por—
tion of the TOS_Msg. Packets have a maximum payload
of 29 bytes.

The data field consists of an array of 29 bytes (as
specified by TOSH_DATA_LENGTH). The last 2 bytes
are assigned to CRC field. When sending a packet, the
check-sum is incrementally calculated as each byte of
the packet is transmitted. The last three fields of
TOS_Msg are the unsigned 2-byte strength, the single
unsigned byte ack field and unsigned 2-byte time fields.
These three fields are meta—data about the packet and
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are not transmitted. The ack is sent by receiver and set
by sender. This is the mechanism that can provide reli-
ability in the stack. The strength field is currently un-
used, and the time field stores an atomic capture of a
16-bit 4MHz counter. The maximum length of a trans-
mitted TOS_Msg is 36 bytes[8].

In this work, implementation of Consensus Algorithm
on Mate' was executed by utilizing the AM packet. To
make possible the dissemination of the suspect matrix
and fault vector to every nodes, they are inserted in the
data field in AM. As shown in fig. 6, the data field is
filled with the suspect message packet (message type, ID
number of the sender node and the suspect matrix, S)
and the fault message packet (message type, ID number
of the sender node and the fault vector, F). For a 4-node
sensor network, the suspect matrix S is 16-byte long
and the fault vector F is 4-byte long.
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Fig. 6. The structure of AM packet for a 4-node sensor
network

{SEARCH PATH="..
{SEARCH PATH="../contexts">

<SEARCH PATH="../languages">

<SEARCH PATH="../../../../contrib/xbow/tos/lib/ReliableRoute">
{SEARCH PATH="../extensions">

CLOAD FILE="../sensorboards/micasb.vnsf">

(LANGUAGE NAME="tscript">
{FUNCTION NAME="led">

CFUNCTION NAME="send">

CFUNCTION MAME="1light">
<FUNCTION NAME="temp">

<FUNCTION NAME="bclear">
{FUNCTION NAME="bufsorta”>
SEUNCTION NAME="bufsortd™>
<FUNCTION NAME="int">

<FUNCTION NAME="id">

{FUNCTION NAME="son">

{FUNCTION NAME="soff">

<FUNCTION NAME="uart">

<FUNCTION NAME="rand">

CCONTEXT NAME="Once"> )
CCONTERT WANE=SendCounter™
CCONTEXT NAME="Timerl">

/opcodes ">

Fig. 7. The source code of a newly added context



Application of Consensus Algorithm to Mate’ for Identifying Faulty Sensor Node in Sensor Networks

In order to verify the feasibility of the Consensus
Algorithm on Mate’, some experiments for a 4-node
sensor network are executed. A Java Virtual machine
with the SendCounter context (handler) is designed for
monitoring the Consensus Algorithm[9-10]. Fig. 7 shows
the source code of a newly added context and fig. 8
shows a newly designed Java Applet to embody a new
event handler.
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Fig. 8 Newly designed Java applet for new event
handler

Fig. 9 shows the test system which is composed of 4
sensor nodes working without any faulty sensor node.

Fig. 9. The test system composed of 4 sensor nodes in a
fault—free state

Fig. 10 shows the corresponding suspect matrix from
each nodes monitored by sink node. The value of 0 in
matrix represents the fault—free state of the network.
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Fig. 10. Monitored suspect message packet in case of
fault-free state

To verify the feasibility of proposed scheme, node 1
gets faulty on purpose, as one can notice in fig. 11.

In this case, the received suspect message packets can
be monitored as in fig. 12. The underlined elements of
message packet show that the node 1 is fauity.

Fig. 11. The test system composed of 4 sensor nodes in
a faulty state (node 1 is faulty)
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Fig. 12. Monitored suspect message packet in case of
faulty case.
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5. Conclusion

In this work, we have examined the applicability of
Consensus Algorithm to motes. To verify the faulty sen-
sor detection ability of the proposed scheme, several
tests were conducted utilizing a simple 4-node network.

The result shows that Consensus Algorithm can be
successfully applied to pinpoint which sensor node is
faulty just by monitoring the suspect matrix and fault
vector. However, in this work we considered the simple
4-node network. Generally, it will take more time to
reach consensus in case of larger sensor networks.
Therefore, a further study on reducing the time for
reaching consensus will be required.
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