Risk assessment of Nitrogen Dioxide exposure on Welders

Seong-Wook Jeong, Seung-Hyg Song and Heung-Jai Park

School of Environmental Science and Engineering, Inje University, Gimhae 621-749, Korea (Manuscript received 31 December, 2004; accepted 26 January, 2005)

This study evaluated the hazard caused by NO_2 , an oxidant generated in the process of welding. We compared hematological and biochemical parameters in workers who chronically inhale NO_2 and office workers not exposed to NO_2 . NO_2 exposure affected the hematological and biochemical parameters. Increasing NO_2 concentrationincreased the number of leukocytes, while decreasing the number of erythrocytes. Blood urea nitrogen, creatinine, uric acid, and lactate dehydrogenase were increased, while total protein and triglycerides were decreased. The mean concentration of $NO_x(NO_2^-/NO_3^-)$ in the serum of welders and the control group was 35.97 ± 2.85 and $55.40\pm5.81~\mu mol/L$, respectively. The difference was significant (p<0.05), although NO_2^- was not detected in the serum.

Key Words: Nitrogen dioxide, Hematological factors, Biochemical factors, Welders

1. Introduction

Nitrogen dioxide is a red-brown, strong-smelling, oxidative gas that produces free radicals¹⁾. It is generated during combustion in power plants and industrial facilities, which are fixed sources of contamination, and from internal combustion engines of vehicles using fossil fuels, which emit NO. NO is rapidly oxidized to NO₂, a highly toxic gas²⁻⁴⁾. NO₂ is an indoor air pollutant generated by smoking, cooking, and heating appliances, which are the main sources of human exposure^{5,6)}.

In the work environment, exposure to nitrogen oxides, including NO₂, occurs with the use of nitric acid and during welding using an oxy-acetylene flame. The main pathway into the body is inhalation via the respiratory organs²). Exposure to NO₂ affects the immune system, decreasing the number of lymphocytes.

Welding, which is widely used in industry, causes many hazards to the health of welders $^{7\sim 9)}$.

Welding generates NO_2 , which is inhaled. Ninety percent of the inhaled NO_2 is absorbed in the tracheobronchial tree and respiratory region. Acute exposure to NO_2 causes a cough, headache, fatigue, eye

Corresponding Author: Seong-Wook Jeong, School of Environmental Science and Engineering, Inje University, Gimhae 621-749, Korea

Phone: +82-55-320-3418 E-mail: envjsu@dreamwiz.com irritation, respiratory difficulty, pneumonia, asthma, and vesicular emphysema¹⁰. According to Matthew *et al.* (1996)¹¹, abnormal immune function also results.

This study examined hematological and biochemical parameters in welders chronically exposed to NO_2 in the work environment and the serum NO_x concentration in order to evaluate the hazard of vocational exposure to NO_2 .

2. Materials and Methods

2.1. Materials

Thirty-six male arc welders and 40 male office workers (no occupational exposure), between the ages of 45 and 50, who worked in a shipyard and the assembly of metal accessories, participated in this study.

2.2. NO₂ in workplace air and serum

NO₂ samples were collected from the respiratory region of workers using a triethanolamine coated passive tube (SKC 226-40, USA) with a personal air sampler (MSA, Pittsburgh, PA, USA) at a flow rate of 0.2 L/min. The absorbance at 540 nm was measured with a UV/VIS spectrophotometer (UV-2201, Shimadzu, Japan) and quantified.

 NO_x in the serum was analyzed using an NO-analyzing system (ENO-20, Eicom Corp., Kyoto, Japan) and the analytical conditions are shown in Table 1.

Methanol (Sigma, HPLC grade) was added to a

serum sample, which was deproteinized, and centrifuged at 12,000 g for 15 min. The supernatant was analyzed. Nitrite (NO₂) and nitrate (NO₃) ions were separated in a column packed with polystyrene polymer. The NO₂ was reacted form a purple diazo compound; the flow rate of the mobile phase was 0.33 L/min and that of the Griess reagent was 0.1 L/min. The absorbance was measured at 540 nm. NO₃ was analyzed using a cadmium reduction column after reduction to nitrite ¹².

2.3. Analysis of hematological parameters

Blood was collected from 36 welders and 40 office workers at the Industrial Health Center at Inje University. Vacutainer tubes containing EDTA (ethylenedia-minetetraacetic acid) were used to collect samples under standard conditions and stored at room temperature. The numbers of erythrocytes and leukocytes were counted with an automatic cell counter (Micros 60, France).

2.4. Analysis of biochemical parameters

Blood was collected in Vacutainer tubes containing gel and clot activator, stored at room temperature for 30 min, centrifuged at 2,500~g to separate the serum, and stored at $-70\,^{\circ}$ C until analysis. The concentrations of creatinine, total protein, albumin, uric acid, triglycerides, BUN (blood urea nitrogen), LDH (lactate dehydrogenase), and HDL (high density lipoprotein) were measured with a biochemical analyzer (LISA, France).

2.5. Statistical analysis

The analysis and statistical processing of data were

performed with the program SPSS (ver. 10.0) and the mean and standard error were calculated. Student's t-test was used to compare the results and the level of significance was p<0.05.

Results

3.1. NO₂ in the workplace air and serum NO_x

The concentrations of NO_2 inhaled by the welders were analyzed. The mean concentration that welders in the shipyard and metal assembly company were exposed to was 0.025 ± 0.002 and 0.020 ± 0.001 mg/m³, respectively. The difference was thought to result from the amount of welding and work intensity (Table 2).

The NOxconcentration in serum was analyzed with an NO-analyzing system (ENO-20, Eicom Corp., Kyoto, Japan) and standard solutions (NaNO₂ and NaNO₃) were purchased from Sigma Co. Chromatograms of standard NO₂ and NO₃ (10 μmol/L) and that for the serum of a welder are shown in Figs. 1(A) and 1(B), respectively. The standard NO₂ / NO₃ curve is shown in Fig. 2.

The total NO_x concentration, which is the product of metabolism, was calculated as the sum of the nitrite (NO_2) and nitrate (NO_3) concentrations. The serum NO_x concentration is shown in Table 3.

The NO_x concentration in welders and the control group was 35.972.85 and 55.40±5.81 µmol/L, respectively, and the difference was significant (p<0.05). Tsujii *et al.*¹³⁾ and Giroux *et al.*¹⁴⁾ reported increased nitrates in the serum of animals and humans and the NO_2 and NO_3 concentrations were increased in patients with generalized infections¹⁵⁾. We did not detect

Table 1. The analytical condition of NO_x

Column	Eicom, ENO-20 NO-PAK(packed with polystyrene polymer, 4.6×50 mm) NO-RED(cadmium reduction column)	
Column		
Mobile phase	10% methanol (containing 0.15 M NaCl-NH4Cl,0.5 g/L of EDTA · 4Na)	
Flow rate	0.33 ml/min	
Injection volume	5 μℓ	
Detection_wavelength	540 nm	

Table 2. The mean concentration of NO_x to inhalation exposure in welding workplace

Type of industry	$NO_x (mg/m^3)$
Manufacture of shipment part company	0.025±0.002
Manufacture of assembly metal component	0.020±0.001

Values are mean±standard error

NO₂ in serum (Table 3). Therefore, we postulate that NO₂ reacted with oxy-hemoglobin in whole blood and was oxidized rapidly to NO₃, as reported in Moshage¹⁶. Many researchers have concluded that NO₃ is stable in

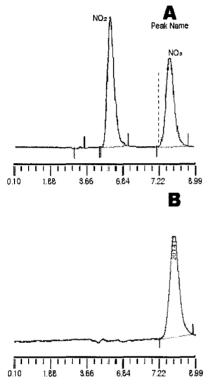


Fig. 1. Chromatogram of the standard NO_2 and NO_3 solution(A) and NO_x analysis in serum prepared from welder and control persons(B).

the synthesis of NO, while NO₂ is difficult to detect.

3.2. Hematological parameters

The results of the blood analysis are shown in Table 4. The number of leukocytes in the exposure and control groups was 7.78 ± 0.37 and $6.69\pm0.21\times10^9$ cells/L, respectively, and the difference was significant (p<0.05). A previous study reported a decrease in immune function in the respiratory organs and inflammation, with increased erythrocytes in the peripheral blood and bronchoalveolar lavage (BAL) fluids¹⁷⁾. Rutowski¹⁸⁾ reported that NO₂ and NO exposure increased lymphocytes and leukocytes in smokers and non-smokers. We saw a similar trend in the welders. The number of erythrocytes in the welders and office

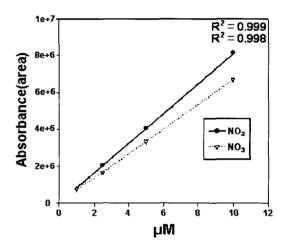


Fig. 2. Standard curve of NO₂ and NO₃.

Table 3. The concentration of NO₂ and NO₃ in serum of welder and control group(unit: mol/L)

_	NO ₂	NO ₃	Total NO _x	p value
Exposure	ND	35.97±2.85	35.97±2.85	0.002*
Control	ND	55.40±5.81	55.40±5.81	0.002*

Values are mean±standard error

Significant difference from controls *(p <0.05)

ND: Not detected

Table 4. The effect of NO₂ inhalation exposure on the hematological factor in exposure and control group

Factor	Exposure	Control	p value
Leukocyte (10 ⁹ cells/L)	7.78±0.37	6.69±0.21	0.009*
Erythrocytes (10 ¹² cells/L)	4.57±0.06	4.77±0.06	0.019*

Values are mean±standard error,

Significant difference from controls (p<0.05)

workers was 4.57 ± 0.06 and $4.77\pm0.06\times10^{12}$ cells/L, and the decrease was significant (p<0.05).

Posin *et al.*¹⁹⁾ reported that exposure to 1 mg/L NO₂ significantly decreased the acetylcholinesterase activity in erythrocyte cell membranes and exposure to 2 mg/L NO₂ increased the super oxidation of erythrocytes.

3.3. Biochemical parameters

The biochemical parameters of the welders and office workers are shown in Table 5. The total serum protein in the welders and office workers was 8.10 ± 0.11 and 8.42 ± 0.11 g/dl, respectively, and the decrease was significant (p<0.05). This counters the result of William et al.²⁰⁾, and may be due to the response to long-term exposure in welders. This needs to be studied further. The albumin concentration in welders and office workers was 4.30 ± 0.02 and 4.25 ± 0.01 g/dl, respectively. A study by Frampton et al.²¹⁾ found no change in the total protein and albumin concentrations in BAL fluid with NO₂ exposure.

BUN is formed in the urea cycle with the deamination of amino acids. The BUN in welders and office workers was 13.55 ± 0.59 and 9.53 ± 0.45 mg/dl, respectively, and the increase was significant (p<0.05). The creatinine, an index of adrenal function, in welders and office workers was 0.79 ± 0.02 and 0.75 ± 0.01 mg/dl, respectively (p<0.05). Giroux and Ferrieres¹⁴⁾ obtained a similar result.

The triglyceride concentration in welders and office workers was 104.90 ± 6.86 and 134.90 ± 10.61 mg/dl, respectively (p<0.05). The concentration of uric acid, the

final product of purine metabolism, in welders and office workers was 5.45 ± 0.14 and 4.95 ± 0.19 mg/dl, respectively (p<0.05). By contrast, Kelly *et al.*²²⁾ stated that uric acid recovered to normal levels 24 h after exposure. Our result was judged to be due to the long-term exposure of welders to NO₂, and further research is necessary.

The LDH in the respective groups was 175.90 ± 10.62 and 154.87 ± 3.42 IU/L, and the increase was significant (p<0.05). William *et al.*²⁰⁾ reported a similar result. The HDL in welders and office workers was 57.62 ± 2.35 and 56.50 ± 1.81 mg/L, respectively. The difference was not significant.

4. Discussion

 NO_2 affected the hematological parameters, significantly(p<0.05) increasing the number of leukocytes in welders. This might be the result of a change in NO_2 , which triggers inflammation, a bio-defense mechanism to produce oxidants. The effects of chronic exposure to low concentrations should be studied. The number of erythrocytes was significantly decreased in the welders (p<0.05).

 NO_2 decreased the protein and triglycerides in welders, while the BUN, generated in the urea cycle, and creatinine, an index of renal function, were significantly increased. This suggests that the high NO_2 concentrations in the exposure group break down tissue proteins and disrupt adrenal function.

The serum LDH was significantly increased in the

Table 5. The biochemical factor in welder and control group for NO2 inhalation exposure

Factor	Exposure	Control	p value
Total protein (g/dl)	8.10±0.11	8.42±0.11	0.048*
Albumin (g/dl)	4.30 ± 0.02	4.25 ± 0.01	0.032*
BUN (mg/dl)	13.55±0.59	9.53±0.45	0.000^{*}
Creatinine (mg/dl)	0.79 ± 0.01	0.75 ± 0.01	0.027^{*}
Triglyceride (mg/dl)	104.90±6.86	134.90 ± 10.61	0.037^{*}
Uric acid (mg/dl)	5.45±0.14	4.95±0.19	0.040*
LDH (IU/L)	175.90±0.62	154.87±3.42	0.041*
HDL (mg/L)	57.62±2.35	56.50±1.81	0.417

Values are mean±standard error,

Significant difference from controls *(p<0.05) Abbreviations, BUN; blood urea nitrogen,

LDH; lactate dehydrogenase, HDL; high-density lipoprotein,

IU; international unit.

welders (p<0.05), suggesting that NO₂ exposure affects the cells in the respiratory organs. The serum HDL was increased in welders, but the difference was not significant.

The mean serum NO_x concentration (NO_2/NO_3) in welders and the control group was 35.97 ± 2.85 and 55.40 ± 5.81 µmol/L, respectively, and the decreased was significant (p<0.05). Nevertheless, NO_2 was not detected in the serum, since NO_2 reacts with oxy-hemoglobin and is oxidized rapidly. The exposure to NO_2 varied with welding time and work intensity. Welders at the shipyard inhaled 0.0250.002 mg/m³ versus 0.020 ± 0.001 mg/m³ at the metal component manufacturer.

In summary, the increased leukocyte number in serum, but decreased the erythrocyte count in blood and NO_x concentration in serum. Moreover, total protein and triglycerides decreased, while BUN, creatinine, uric acid, and LDH were increased.

References

- Krishna, M. T. and S T. Holgate, 1999, Inflammatory mechanisms underlying potentiation of effects of inhaled aeroallergens in response to nitrogen dioxide in allergic airway diseas, Clin. Exp. Allergy, 29, 150-154.
- William, N. R., 1998, Environmental and ccupational disease; Nitrogen Dioxide/Nitric oxide. 3rd, Lippincott Raven, New York, 617-629pp.
- Farrar, D, P. Dingle and R. Tan, 2001, Exposure to nitrogen dioxide in Buses, Taxis and Bicycles in perth, Western Australia, Bull. Environ. Contam. Toxico, 66, 433-438.
- Rebecca, L. P., M. B. Wendy, H. H. Nicholas and R. H. David, 2001, Nitrogen dioxide Induces death in lung Epithelial cells in a Density Dependent Manner, Am J. Respir. Cell Mol. Biol., 24, 583-590.
- Leaderer, B. P., R. T. Zagraniski, M. Berwick and J. A. Stolwijk, 1986, Assessment of exposure to indoor air contaminants from combustion sources: ethodology and application, Am J. epidemiol., 124, 275-289.
- Susanne, B. and M. S. Joleen, 1998, Effect of nitrogen dioxide on Respiratory Vial Infection in Airway Epithelial Cells, Environ. Res. Section A, 81, 159-166.
- 7) Tanala, S., 1996, Manganese poisoning and exposure in Pennsylvania, Arch. Environ. Health, 19,

- 674-684.
- Castner, H. R. and C. L. Null, 1998, Chromium, Nickel and manganese in shipyard welding fumes, Welding Research Supplement, 223-231pp.
- 9) Hudson, N. J., A. T. Evans, C. K. Yeung and P. J. Hewitt, 2001, Effect of Process Parameters Upon the Dopamine and Lipid Per- oxidation Activity of Selected MIG Welding Fumes as a Marker of Potential Neurotoxicity, Ann. Occup. Hyg., 45(3), 187-192.
- Samet, J. M., W. E. Lamberi and B. J. Skipper 1993, nitrogen dioxide and respiratory illnesses in infants, Am Rev. Respir. Dis., 148, 1258-1265.
- 11) Matthew, I. G., P. Patricia and K. S. Maryjane, 1996, Increased immune and Inflammatory Responses to Dust Mite Antigen in Rats Exposed to 5 ppm NO₂, Fundam Appl. Toxicol., 31, 65-70.
- 12) Yamada, K., K. Senzaki, Y. Komori, T. Nikai, H. Sugihara and T. Nabeshima, 1997, Change in extracellular nitrite and nitrate levels after inhibition of glial metabolism with fluorocitrate, Brain Res., 72-78pp.
- 13) Tsujii, A., M. Kunimoto, N. Shimojo and T. Miura, 1985, In vivo effect of nitrogen dioxide on blood nitrate level and the Na+, K+, ATPase activity of red blood cells of rats, Toxicol. Lett., 24, 59-63.
- 14) Giroux, M. and J. Ferrieres, 1998, Serum nitrites and creatinine in workers exposed to atmospheric nitrogen oxides and ammonia, Sci. Total Environ., 217, 265-269.
- 15) Yasuhiro, T., M. Takashi, H. Yoshiyuki, T. Motomichi and T. Masao, 1998, Expression of Inducible Nitric Oxide Synthase in Circulating Neutrophils of the Systemic Inflammatory Response Syndrome and Septic Patients, World J. Surg., 22, 771-777.
- 16) Moshage, H., 1997, Nitric oxide determinations: much ado about NO-thing?, Clin. Chem., 43, 553.
- 17) Solomon, C., D. L. Christian and L. L. Chen, 2000, Effect of serial day exposure to nitrogen dioxide on airway and blood leukocytes and lymphocyte subsets, Eur. Respir. J., 15(5), 922-928.
- 18) Rutowski, J., P. Moszczynski, J. W. Dobrowolski, S. Bem and D. Krochmal, 1998, The effects of occupational exposure to nitrogen dioxide(NO₂) on the immunological parameters in workers, Med. Pr., 49(4), 341-351.
- Posin, C., R. D. Buckley, K. Chark, J. D. Hackney, M. P. Jones and J. V. Patterson, 1978, nitrogen

- dioxide inhalation and human blood biochemistry, Arch. Environ. Health, 33(6), 318-324.
- 20) William, J. M., T. K. Michael, K. B. Deepal and F. P. Robert, 2001, Respiratory Tract Responses to Repeated Inhalation of an Oxidant and Acid Gas-Particle Air Pollutant Mixture, Toxicol Sci., 61, 331-341.
- Frampton, M. W., J. N. Finkelstein, N. J. Roberts,
 A. M. Smeglin, P. E. Morrow and M. J. Utell,
- 1989, Effect of nitrogen dioxide exposure on branchoalveolar lavage proteins in humans, Am J. Respir. Cell Mol. Biol., 1(6), 499-505.
- 22) Kell, F. J., A. Blomberg, A. Frew, S. T. Holgate and T. Sandstrom, 1996, Antioxidant kinetic in lung lavage fluid following Exposure of humans to nitrogen dioxide, Am J. Respir. Crit. Care Med., 154, 1700-1705.