Importance of Carbon Monoxide Transfer Coefficient (KCO) Interpretation in Patients with Airflow Limitation

기류제한 환자의 일산화탄소확산능 해석에서 폐용적 보정의 의의

  • Seo, Yong Woo (Department of Medicine, Keimyung University School of Medicine) ;
  • Choi, Won-Il (Department of Medicine, Keimyung University School of Medicine) ;
  • Lee, Jeong Eun (Department of Medicine, Keimyung University School of Medicine) ;
  • Park, Hun Pyo (Department of Medicine, Keimyung University School of Medicine) ;
  • Ko, Sung Min (Department of Radiology, Keimyung University School of Medicine) ;
  • Won, Kyoung Sook (Department of Nuclear Medicine, Keimyung University School of Medicine) ;
  • Keum, Dong Yoon (Department of Thoracic Surgery, Keimyung University School of Medicine) ;
  • Lee, Mi-Young (Department of Preventive Medicine, Keimyung University School of Medicine) ;
  • Jeon, Young June (Department of Medicine, Keimyung University School of Medicine)
  • 서용우 (계명대학교 의과대학 내과학교실) ;
  • 최원일 (계명대학교 의과대학 내과학교실) ;
  • 이정은 (계명대학교 의과대학 내과학교실) ;
  • 박훈표 (계명대학교 의과대학 내과학교실) ;
  • 고성민 (계명대학교 의과대학 방사선과) ;
  • 원경숙 (계명대학교 의과대학 핵의학과) ;
  • 금동윤 (계명대학교 의과대학 흉부외과) ;
  • 이미영 (계명대학교 의과대학 예방의학교실) ;
  • 전영준 (계명대학교 의과대학 내과학교실)
  • Received : 2005.04.27
  • Accepted : 2005.09.05
  • Published : 2005.10.30

Abstract

Background : The single-breath carbon monoxide diffusion capacity (DLCO) and the per unit alveolar volume (KCO; $D_LCO/VA$) gave discordant values when there was an abnormal alveolar volume (VA). However, the clinical significance of the discordant values in patients with airflow limitation has not been examined. This study investigated the $D_LCO$ and KCO changes after improving the airflow limitation. Methods : The baseline $D_LCO$ and KCO with lung volume were measured in patients with an airflow obstruction. The effective alveolar volume was measured using the single-breath $CH_4$ dilution method. The patients divided into two groups according to the baseline values: (1) increased KCO in comparison with the $D_LCO$ (high discordance) (2) decreased or not increased KCO in comparison with the $D_LCO$ (low discordance). The diffusion capacity and lung volume were measured after treatment. Results : There was no significant difference in the baseline lung volumes including the $FEV_1$ and FVC between the two groups. The $FEV_1$ and FVC were significantly increased in the high discordance group compared with the low discordance group after treating the airflow limitation. The $D_LCO$ and alveolar volume were significant higher in the high discordance group compared with the low discordance group while the TLC was not. Conclusion : The discordance between the $D_LCO$ and KCO could be translated into an airflow reversibility in patients with an airflow limitation.

배 경 : 폐확산능 ($D_LCO$)과 폐용적을 보정한 확산계수($D_LCO/VA$; KCO)는 폐포용적이 비 정상적인 경우 차이가 생긴다. 그러나, 기류제한으로 비 정상적인 폐포용적을 가지는 환자에서 이러한 차이의 의미는 연구되지 않았다. 본 연구는 기류제한이 있는 환자에서 기류제한의 호전에 따른 폐확산능과 확산계수의 변화를 연구하고자 한다. 방 법 : 기류제한이 있는 환자에서 기저 폐기능과 더불어 폐확산능을 측정하고, 일회호흡 $CH_4$ 희석법으로 폐포용적을 측정하였다. 기저치에 따라서 환자는 다음의 두 군으로 나누었다. 확산계수(예측치에 대한 백분율)와 확산능(예측치에 대한 백분율)의 비가 115%를 넘는 경우를 고차이군으로 하였고, 115% 미만인 경우를 저차이군으로 하였다. 기류제한을 치료 한 후 폐기능검사와 폐확산능을 반복해서 측정하였다. 결 과 : 고차이군과 저차이군의 기저 폐기능은 유의한 차이가 관찰되지 않았다. 두 군 모두 확산계수의 예측치에 대한 백분율은 평균 113%와 100%로 정상범위였다. 치료 후 추적 폐기능에서 $FEV_1$과 FVC는 저차이군에 비해 고차이군에서 증가하였다. 고차이군에서 치료 후 측정한 폐기능은 기저치에 비해 폐확산능과 폐포용적은 증가하였으나 저차이군에서는 유의한 차이는 관찰되지 않았다. 전폐용적과 잔기량은 치료 전후에 양군 모두에서 유의한 차이가 관찰되지 않았다. 결 론 : 기류제한이 있는 환자에서 확산계수는 정상 범위에 있지만 확산능이 감소한 경우 확산능이 감소하지 않은 환자에 비해 가역적인 기류폐색이 클 것으로 예측할 수 있다.

Keywords

References

  1. Ogilvie CM, Forster RE, Blakemore WS, Morton JW. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J Clin Invest 1957;36:1-17 https://doi.org/10.1172/JCI103402
  2. Clark EH, Woods RL, Hughes JM. Effect of blood transfusion on the carbon monoxide transfer factor of the lung in man. Clin Sci Mol Med 1978;54:627-31
  3. Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders MJ. Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusiong capacity) and ventilation and cardiac frequency during submaximal exercise. Clin Sci 1972;42:325-35
  4. Marrades RM, Diaz O, Roca J, Campistol JM, Torregrosa JV, Barbera JA, et al. Adjustment of DLCO for hemoglobin concentration. Am J Respir Crit Care Med 1997;155:236-41 https://doi.org/10.1164/ajrccm.155.1.9001318
  5. Filley GF, MacIntosh DJ, Wright GW. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J Clin Invest 1954;33:530-9 https://doi.org/10.1172/JCI102923
  6. Hsia CC, McBrayer DG, Ramanathan M. Reference values of pulmonary diffusing capacity during exercise by a rebreathing technique. Am J Respir Crit Care Med 1995;152:658-65 https://doi.org/10.1164/ajrccm.152.2.7633723
  7. Ewan PW, Jones HA, Rhodes CG, Hughes JM. Detection of intrapulmonary hemorrhage with carbon monoxide uptake: application in goodpasture's syndrome. N Engl J Med 1976;295:1391-6 https://doi.org/10.1056/NEJM197612162952502
  8. Kanengiser LC, Rapoport DM, Epstein H, Goldring RM. Volume adjustment of mechanics and diffusion in interstitial lung disease: lack of clinical relevance. Chest 1989;96:1036-42 https://doi.org/10.1378/chest.96.5.1036
  9. Johnson DC. Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir Med 2000;94:28-37 https://doi.org/10.1053/rmed.1999.0740
  10. Chinn DJ, Cotes JE, Flowers R, Marks AM, Reed JW. Transfer factor (diffusing capacity) standardized for alveolar volume: validation, reference values and applications of a new linear model to replace KCO (TL/VA). Eur Respir J 1996;9:1269-77 https://doi.org/10.1183/09031936.96.09061269
  11. Hughes JM, Pride NB. In defence of the carbon monoxide transfer coefficient Kco (TL/VA). Eur Respir J 2001;17:168-74 https://doi.org/10.1183/09031936.01.17201680
  12. Dubois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH Jr. A rapid plethysmographic method for measuring thoracic gas volume. J Clin Invest 1956; 35:322-6 https://doi.org/10.1172/JCI103281
  13. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flow. Eur Respir J Suppl 1993;16:5-40
  14. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusion capacity). Eur Respir J Suppl 1993; 16:41-52
  15. Quanjer PH. Standardized lung function testing: report working party. Bull Eur Physiopathol Respir 1983;19(Suppl 5):1-95
  16. American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor): recommendations for a standard technique- 1995 update. Am J Respir Crit Care Med 1995;152:2185-98 https://doi.org/10.1164/ajrccm.152.6.8520796
  17. Dutrieue B, Paiva M, Verbanck S, le Gouic M, Darquenne C, Prisk GK. Tidal volume single-breath washin of SF6 and CH4 in transient microgravity. J Appl Physiol 2003;94:75-82
  18. Pesola GR, Sunmonu Y, Huggins G, Ford JG. Measured diffusion capacity versus prediction equation estimates in blacks without lung disease. Respiration 2004;71:484-92
  19. Roberts CM, MacRae KD, Seed WA. Multi-breath and single breath helium dilution lung volumes as a test of airway obstruction. Eur Respir J 1990;3: 515-20
  20. Stam H, Versprille A, Bogaard JM. The components of the carbon monoxide diffusing capacity in man dependent on alveolar volume. Bull Eur Physiopathol Respir 1983;19:17-22
  21. Lipscomb DJ, Patel K, Hughes JM. Interpretation of increases in the transfer coefficient for carbon monoxide (TLCO/VA or KCO). Thorax 1978;33:728-33 https://doi.org/10.1136/thx.33.6.728
  22. Miller JM, Johnson RL Jr. Effect of lung inflation on pulmonary diffusing capacity at rest and exercise. J Clin Invest 1966;45:493-500 https://doi.org/10.1172/JCI105363
  23. Stam H, Hrachovina V, Stijnen T, Versprille A. Diffusing capacity dependent on lung volume and age in normal subjects. J Appl Physiol 1994;76:2356-63
  24. Corris PA, Ellis DA, Hawkins T, Gibson GJ. Use of radionuclide screening in the preoperative estimation of pulmonary function after pneumonectomy. Thorax 1987;42:285-91 https://doi.org/10.1136/thx.42.4.285
  25. Al Jarad N, Poulakis N, Pearson MC, Rubens MB, Rudd RM. Assessment of asbestos-induced pleural disease by computed tomography: correlation with chest radiograph and lung function. Respir Med 1991; 85:203-8 https://doi.org/10.1016/S0954-6111(06)80080-6
  26. Laroche CM, Caroll N, Moxham J, Green M. Clinical significance of severe isolated diaphragm weakness. Am Rev Respir Dis 1988;138:862-6 https://doi.org/10.1164/ajrccm/138.4.862
  27. Siegler D, Zorab PA. The influence of lung volume on gas transfer in scoliosis. Br J Dis Chest 1982;76: 44-50 https://doi.org/10.1016/0007-0971(82)90006-7