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Abstract. The author derives a general explicit formula and presents an heuristic algorithm for solving 
Baker’s model. The examples show that this new approximate solution procedure for determining near 
optimum inspection intervals is more accurate than the ones suggested by Chung (1993) and Vaurio (1994), 
and is more efficient computationally than the one suggested by Hariga (1996). The construction and solution 
of the simplest profit model for an exponential failure distribution were presented in Baker (1990), and 
approximate analytical results were obtained by Chung (1993) and Vaurio (1994). The author will therefore 
mainly devote the following discussion to the problem of further approximating optimum inspection intervals. 
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1.  INTRODUCTION 

Consider a single unit representing a manufacturing 
system composed of many components. In the following, 
the author will use the word “machine” to refer to such a 
single-unit or complex system. Under the superposition 
of the renewal processes related to the failure of the 
components, it is reasonable to assume that the ma-
chine’s failure distribution is exponentially distributed, 
see Cox and Smith (1954). In fact, Drenick (1960) 
mathematically showed that under reasonably general 
conditions, distribution of the time between failures 
tends to the exponential as the complexity of machine 
structure or the time of operation increases. Moreover, 
many authors such as Davis (1952) and Epstein (1958) 
found strong empirical justification that this failure law 
characterizes a wide variety of devices including ball-
and-roller bearings, vacuum tubes, bus engines, and 
many electronic systems.  

Now suppose that a machine is subject to failures at 
random with a constant hazard λ per unit time, i.e. follows 
the exponential failure distribution  for ttF λ−−= e1)(

0>λ  and , and that failures can be revealed only 
by periodic inspection (or testing) and then replaced. 
Notice that a continuous monitoring of operating states 
is not economically justifiable for some machines. Alternatively, 
inspections are useful in monitoring the machine’s con-
dition, and these can be made periodically at fixed mul-
tiples of some predetermined time interval T in order to 

reduce the probability of malfunction. Frequent inspec-
tion increases inspection costs while infrequent inspec-
tion leads to increasing lost production costs. Thus, an 
economically optimum inspection interval usually exists. 

0≥t

Many authors in the maintenance literature have 
considered different variations of this single machine 
inspection problem. Kamins (1960) and Coleman and 
Abrams (1962) extensively studied inspection procedures 
to maximize availability. Each considered the possibility 
that inspection might subject the machine to further 
stresses that might lead to failure. The probabilities of 
calling a good machine bad and a bad machine good 
were included in their analysis. The main difference 
between these two studies is that the former used the 
constant time T while the latter used the expected time 
between two successive inspections in determining ma-
chine availability. Other distinguished studies are for 
example, Jacobs (1968), Vaurio (1979), Voelker (1980), 
McWilliams and Martz (1980), Sim (1985), Lam (1995, 
2003) and Banerjee and Chuiv (1996). A rather detailed 
literature review on inspection-scheduling problems 
proposed by Barlow et al. (1963) and Brender (1963) 
can be found in Leung (2001). 

Baker (1990) proposed the simplest model, based 
on the restrictive assumption that a failure completely 
halts production, for finding the optimum inspection 
frequency that generates maximum profit. Chung (1993), 
Vaurio (1994) and Hariga (1996) subsequently developed 
approximate solution procedures for Baker’s model. 
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Assuming that a perfect maintenance policy is followed 
instead of performing just an inspection at the end of 
each cycle, Hariga (1996) generalized Baker’s model by 
allowing the failure time to follow a general type of dis-
tribution such as Weibull. Under the exponential shifting 
time from the in-control state where items of perfect 
quality are produced to an out-of-control state where 
items of sub-standard quality are produced (see e.g. Lee 
and Rosenblatt 1987), Ben-Daya and Hariga (1998) and 
Hariga and Al-Fawzan (2000) reformulated Baker’s 
model respectively by incorporating constant inspection 
and replacement times and by using the concept of dis-
counted cash flow analysis to account for the effects of 
the time value of money on inspection policies. 

For easy reference, the author restates the essence 
of Baker’s model in the next section. In the rest of this 
article, he will: (1) propose a more near optimum solu-
tion procedure for Baker’s model; (2) give three typical 
examples to show that this new procedure is a more ac-
curate approximation than the ones put forward by 
Chung (1993) and Vaurio (1994), and more efficient 
computationally than the one suggested by Hariga 
(1996); and (3) conclude with a possible application of 
the procedure.  

2.  THE EXPECTED AND MAXIMUM PROFIT 
RATES, AND THE MAXIMUM CONDITION 

Let a be the profit per unit time while the machine 
is operating and b be the cost of replacement if the ma-
chine is found to have failed, where . We as-
sume that all replacements are equally expensive, that a 
failure completely halts production until the next inspec-
tion and replacement, and that each replacement restores 
the machine to the as-good-as new state. Let c be the 
cost of each periodic inspection, where . Now, 
suppose that the machine is inspected with periodic time 
T between two successive inspections. The expected 
profit P(T) over one inspection interval T is given by 
Baker (1990): 

0 , ≥ba

0≥c
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Working out the integrals gives 
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Because of the memoryless property of the expo-
nential distribution, the expected profit rate (or per unit 
time) using the renewal reward theorem (see e.g. Ross 
1996) is given by 
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To find the value T = Ta that yields maximum profit 
rate, we differentiate equation (1) and set the derivation 
equal to zero. This yields the maximum condition of 
equation (1), namely  

dx ax
a −=+ − 1e)1( ,  (2) 

where aa Tx λ=  and 
b

cd
a −

=
λ

.  
 
The machine is profitable only if the expected 

profit until failure is greater than the replacement cost, 
i.e. a bλ > . To cover the inspection cost as well, we 
must have a b cλ > +  or . With this condi-
tion, Hariga (1996) showed the existence and unique-
ness of both the break-even inspection interval T

10 << d

b and 
the optimum inspection interval a . Hence, a solution 

 exists. Once x
T

0≥ax a is found, Ta is simply λ
ax , and 

equation (1) yields the maximum profit rate  

a
a T

cbaTz
λ

λ
+
+−

=
1

)()( .  (3) 

Since derivation of equation (3) is not so obvious, it is 
given in the Appendix.  

The emphasis in this article is to find accurate ap-
proximate solutions aa  of equation (2) and then 
determine the maximum profit rate using equation (3). 

Tx λ=

3.  MORE ACCURATE APPROXIMATE OP-
TIMUM INSPECTION INTERVALS 

A second degree Taylor series approximation for ex 
is given by 

2
1e

2xxx ++≅ .    (4) 

Putting 
2

2
e 1x xx− ≅ − +  into equation (2) and ignor-

ing the cubic term which is valid for small xa yields  

dxs 2= ,   (5) 

which is equation (4) in Vaurio (1994). 
Chung (1993) used the approximation 

x
xx

−
+

≅
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By dividing, equation (6) can be written as  

x
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Replacing  by the inverse of equation (6) in equa-
tion (2) yields a quadratic equation with the solution  

x−e

2
)8( ++

=
ddd

xc ,    (8) 

which is equation (5) in Vaurio (1994). 
Vaurio (1994) used the more accurate approximation  

x
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By dividing, equation (9) can be written as  
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Replacing  by the inverse of equation (9) in equa-
tion (2) yields another quadratic equation with the solu-
tion   

x−e

d
ddd

xv −
−+

=
3

)9(22
.   (11) 

Note that equations (9) and (11) correspond to equations 
(6) and (7) in Vaurio (1994). 

The author deduces from equations (4), (7) and (10) 
that the general form of approximation for ex is given by  

fx
xxx

−
++≅

2
1e

2

,   for  0 ≤ f ≤ 1.  (12) 

Equation (12) can be written as  
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In particular, replacing  by the inverse of 
equation (13) with f = 1 and 

x−e
3
2  in equation (2), we can 

obtain equations (8) and (11) respectively. 
In general, replacing  by the inverse of equa-

tion (13) in equation (2) yields a quadratic equation with 
the solution 
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The derivation of equation (14) is given in the Appendix. 
Putting  f = 0 in equation (14), we have 
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Note that the formula for xs is not the same as that for x0 
because the latter imposes no restriction on the value of 
xa in the approximation.  

Since xf is a near optimum value, from equation (2) 

we have 

dx fx
f −≅+ − 1e)1( . 

The following two theorems provide conditions by which 
an heuristic algorithm, introduced below, is devised. 

 
Theorem 1. g(xf) is a strictly decreasing function with 
respect to xf > 0, where 

fx
ff xxg −+= e)1()( .   (15) 

The proof of Theorem 1 is given in the Appendix. 
Figure 1 shows the curve of g(xf) versus f . A 

quick but quite inaccurate x
x

a (especially for 1−d close to 
0 such as Example 3) can be obtained from the enlarged 
Figure 1 which is attached at the end of the Appendix. 

 
1.2

1

Figure 1. 
 

Theorem 2. xf is a strictly decreasing function with re-
spect to f in the interval [0, 1]. 
The proof of Theorem 2 is given in the Appendix. 

Figure 2 shows the curve of xf versus f when d = 
0.5940, see Example 1 below. 

 

Figure 2. 

4.  AN HEURISTIC ALGORITHM 

The procedure the author proposes to solve equa-
tion (2) works as follows: 
(1) As an initial start, we may set 1

2f = . 
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(2) Compute xf and g(xf), correct to 4 significant figures, 
using equations (14) and (15) respectively. 

(3) When 3| ( ) 1 | 10fg x d −− + < , stop. 
(4) When g(xf) < (or >) 1 − d, set f greater (or smaller) 

than the value assigned in step (2). This revision is 
due to Theorems 1 and 2. The new f value is revised 
using the bisection method plus some fine adjust-
ment. Then go to step (2). 
The computations in equations (14) and (15) can 

easily be mechanized with a hand-held programmable 
calculator, with which the near optimum inspection in-
terval xf and the absolute error | ( ) 1 |fg x − + d  can be 
computed “with the push of a button”, and no tables and 
graphs (such as Table I in Baker 1990 and the enlarged 
Figure 1) have to be consulted. The algorithm is illus-
trated by the following three typical examples.  

 
Example 1 
Given that d = 0.5940; hence 1 − d = 0.4060.  
From Table I in Vaurio (1994), we obtain  

xa = 2, , , 090.1=sx 427.11 == cxx 807.1
3
2 == vxx  

Note that  xs ≠ . 714.30 =x
First let 1

2f = . Using equations (14) and (15) obtain 
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Since the error (= 0.4060 – 0.3848 = 0.0212) is not large, 
to speed up the convergence we perform a fine adjust-
ment for f at once. We try f = 0.5450 and obtain 

998.15450.0 =x  and  > 0.4060 4065.0)( 5450.0 =xg

Finally, we obtain . 998.1≅ax
 
Example 2 
Let λ = 0.01 per day, a = $1000 per day, b = $5000, c = 
$90,000. Hence, d = 0.9474 and 1 − d = 0.0526. This is 
the third (extreme) example solved in Baker (1990), 
from which we know that xa = 4.682.  
First let 1

2f = . Using equations (14) and (15) obtain 

2

1
2

1.4211 (1.4211) 4 0.9474 1.0526
3.6788
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x
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Next, let 2
1

3
1 <=f . We have 
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1 =+=f  and obtain 

7521.4
8
3 =x  and 04966.0)(

8
3 =xg  < 0.0526 

To speed up the convergence, we perform a fine adjust-
ment for f. Since 375.08

3 = , we try 0.38 or 0.3825 and 
respectively obtain  

6973.438.0 =x  and  < 0.0526 05196.0)( 38.0 =xg

or 

6703.43825.0 =x  and  > 0.0526 05313.0)( 3825.0 =xg

Finally, we obtain 6703.4≅ax ,  and days 03.467≅aT

8179.8$
6703.41

01.0)000,905000(1000)( =
+

×+−
≅aTz from 

equation (3). 
In this example, the values of xf and g(xf) are cor-

rect to 5 significant figures, but in practice it is sufficient 
for them to be correct to 4 significant figures. 
  
Example 3 
Let λ = 0.01 per day, a = $1000 per day, b = $5000, c = 
$100. Hence, d = 0.00105 and 1 − d = 0.99895. This is 
the first example solved in Baker (1990), from which we 
know that xa = 0.0466.  
Setting 1

2f =  obtains 
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1095.199800105.04)10575.1(10575.1
3
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2
1 =+= −xg  

Then, we obtain 0466.0=ax ,  and  days 66.4=aT ( )az T
1000 - (5000 +100) 0.01= = $906.75

1+ 0.0466
×

from equation (3). 

5.  CONCLUSIONS 

The three typical examples show that the formula 
for f , i.e. equation (14), is the most accurate ap-
proximation of , regardless of the different values of 

x
ax
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xa and hence of the range of d. Moreover, the author 
deems that the proposed algorithm is more efficient and 
less tedious than the one proposed by Hariga (1996) on 
p.356. 

As stated on p.73 in Chung (1993), the expression 
for xc can be used provided the optimum xa is very small, 
such as the first two examples (where xa = 0.0466 and 
0.0341, and xc = 0.0464 and 0.0339) on p.17 in Baker 
(1990). However, Hariga (1996) on p.356 showed that 
Chung’s approximate inspection interval may yield a 
negative profit by means of the third example (where xa 
= 4.682 and xc = 1.929) on p.18 in Baker’s article. This 
means that xc is a poor approximation of xa when it is 
comparatively large. 

The proposed algorithm can also be applied to 
solve equation (7) or (12) in Ben-Daya and Hariga 
(1998). This algorithm incorporates fixed inspection and 
replacement times and relaxes the strict assumption of 
no production during the failed (regarded as an out-of-
control) state. It should be more efficient and less tedi-
ous to use than the algorithm suggested on pp.484-485 
of Ben-Daya and Hariga (1998) for solving equation (7) 
and be more accurate than equations (13) to (15) in 
reaching an approximate solution of equation (12). 

APPENDIX 

1. Derivation of Equation (3) 
From equation (2), we have  
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2. Derivation of Equation (14) 
Inverting equation (13), we have 
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then substituting this in equation (2), we have 
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Notice that the coefficient of the square term is positive 
since 10 << d . 
By the quadratic formula, we have 
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which is negative and thus is rejected. 
 
3. Proof of Theorem 1 
Differentiating equation (15) with respect to , we 
have 
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which is negative for xf > 0. Hence, g(xf) is a strictly 
decreasing function with respect to . fx
 
4. Proof of Theorem 2 
Implicitly differentiating the quadratic equation 
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where  denotes the dis-
criminant of the quadratic equation. The derivative is 
negative for f  and . Hence, x
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0>x 10 << d f is a 
strictly decreasing function with respect to . f

 



128 Leung Kit-Nam Francis 

Example 1, 
(2, 0.4060)

Example 2, 
(4.682, 0.0526)

Example 3, 
(0.0466, 0.99895)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 1

xf

g(xf )

0

8. 

 

Cox, D. R. and Smith, W. L. (1954), On the superposi-
tion of renewal processes, Biometrica, 41, 91-99. 

Davis, D. J. (1952), An analysis of some failure data, 
Journal of the American Statistical Association, 47, 
113-150. 

Drenick, R. F. (1960), The failure law of complex sys-
tem, Journal of the Society for Industrial and Ap-
plied Mathematics, 8, 680-690.   

Epstein, B. (1958), The exponential distribution and its 
role in life testing, Industry Quality Control, 15, 4-9. 

Hariga, M. A. (1996), A maintenance inspection model 
for a single machine with general failure distribu-
tion, Microelectronics and Reliability, 36, 353-358.  

Hariga, M. and Al-Fawzan, M. A. (2000), Discounted 
models for the single machine inspection problem. 
In M. Ben-Daya, S. O. Duffuaa and A. Raouf (ed), 
Maintenance, Modeling and Optimization (Boston: 
Kluwer Academic Publishers), chapter 10, 215-243. 

Jacobs, I. M. (1968), Reliability of engineered safety 
features as a function of testing frequency, Nuclear 
Safety, 9, 303-312. 

Kamins, M. (1960), Determining checkout intervals for 
systems subject to random failures, The Rand 
Corporation, Memo RM-257

Lam, Y. (1995), An optimal inspection-repair-replacement 
policy for a standby systems, Journal of Applied 
Probability, 32, 212-223. 

Lam, Y. (2003), An inspection-repair-replacement model 
for a deteriorating system with unobservable state, 
Journal of Applied Probability, 40, 1031-1042. Enlarged Figure 1. 

Lee, H. L. and Rosenblatt, M. J. (1987), Simultaneous 
determination of production cycles and inspection 
schedules in a production system, Management 
Science, 33, 1125-1136.  REFERENCES 

Leung, K. N. F. (2001), Inspection schedules when the 
lifetime distribution of a single-unit system is com-
pletely unknown, European Journal of Operational 
Research, 132, 106-115. 

Baker, M. J. C. (1990), How often should a machine be 
inspected?, International Journal of Quality and 
Reliability Management, 7, 14-18.  

Banerjee, P. K. and Chuiv, N. N. (1996), Inspection 
policies for repairable systems, IIE Transactions, 
28, 1003-1010. 

McWilliams, T. P. and Martz, H. F. (1980), Human error 
considerations in determining the optimal test in-
terval for periodically inspected standby systems, 
IEEE Transactions on Reliability, R-29, 305-310.  Barlow, R. E., Hunter, L. C. and Proschan, F. (1963), Op-

timum checking procedures, Journal of the Society 
for Industrial and Applied Mathematics, 11, 1078-
1095. 

Ross, S. M. (1996), Stochastic Processes, Wiley, New 
York. 

Sim, S. H. (1985), Unavailability analysis of periodi-
cally tested components of dormant systems, IEEE 
Transactions on Reliability, R-34, 88-91.  

Ben-Daya, M. and Hariga, M. (1998), A maintenance 
inspection model: optimal and heuristic solutions, 
International Journal of Quality and Reliability 
Management, 15, 481-488.  Vaurio, J. K. (1979), Unavailability of components with 

inspection and repair, Nuclear Engineering and 
Design, 54, 309-324. Brender, D. M. (1963), A surveillance model for recur-

rent events, IBM Corporation, Watson Research 
Center, Yorktown Heights, New York, Research 
Report RC-837. 

Vaurio, J. K. (1994), A note on optimal inspection inter-
vals, International Journal of Quality and Reliabil-
ity Management, 11, 65-68.  Chung, K. J. (1993), A note on the inspection interval of 

machine, International Journal of Quality and Re-
liability Management, 10, 71-73.  

Voelker, J. A. and Pierskalla, W. P. (1980), Test selection 
for a mass screening program, Naval Research Lo-
gistics Quarterly, 27, 43-55.

Coleman, J. J. and Abrams, I. J. (1962), Mathematical 
model for operational readiness, Operations Re-
search, 10, 126-138.  

 
 


