Preparation and Characterization of Electrospun Poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) Fibrous Membranes

  • Jin Hyoung-Joon (Department of Polymer Science and Engineering, Inha University) ;
  • Hwang Mi-Ok (Department of Polymer Science and Engineering, Inha University) ;
  • Yoon Jin San (Department of Polymer Science and Engineering, Inha University) ;
  • Lee Kwang Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Chin In-Joo (Department of Polymer Science and Engineering, Inha University) ;
  • Kim Mal-Nam (Department of Biology, Sangmyung University)
  • 발행 : 2005.02.01

초록

Poly(L-lactic acid-co-succinic acid-co-l,4-butane diol) (PLASB) was synthesized by direct condensation copolymerization of L-lactic acid (LA), succinic acid (SA), and 1,4-butanediol (BD) in the bulk using titanium(IV) butoxide as a catalyst. The weight-average molecular weight ofPLASB was $2.1{\times}10^{5}$ when the contents of SA and BD were each 0.5 mol/100 mol of LA. Electrospinning was used to fabricate porous membranes from this newly synthesized bioabsorbable PLASB dissolved in mixed solvents of methylene chloride and dimethylformamide. Scanning electron microscopy (SEM) images indicated that the fiber diameters and nanostructured morphologies of the electrospun membranes depended on the processing parameters, such as the solvent ratioand the polymer concentration. By adjusting both the solvent mixture ratio and the polymer concentration, we could fabricate uniform nanofiber non-woven membranes. Cell proliferation on the electrospun porous PLASB membranes was evaluated using mouse fibroblast cells; we compare these results with those of the cell responses on bulk PLASB films.

키워드

참고문헌

  1. R. Auras, B. Harte, and S. Selke, Macromolecular Bioscience, 4, 835 (2004) https://doi.org/10.1002/mabi.200400043
  2. H. Tsuji and Y. Ikada, Polymer, 36, 2709 (1995) https://doi.org/10.1016/0032-3861(95)93647-5
  3. J. P. Nuutinen, C. Clerc, T. Virta, and P. Tormala, J. Biomat. Sci.-Polym. E, 13, 1325 (2002) https://doi.org/10.1163/15685620260449723
  4. P. Makela, T. Pohjonen, P. Tormala, T. Waris, and N. Ashammakhi, Biomaterials, 23, 2587 (2002) https://doi.org/10.1016/S0142-9612(01)00396-9
  5. X. Yuan, A. F. T. Mak, and K. Yao, J. Appl. Polym. Sci., 85, 936 (2002) https://doi.org/10.1002/app.10490
  6. Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  7. S. H. Hyon, F. Z. Jin, K. Jamshidi, S. Tsutsumi, and T. Kanamoto, Macromol. Symp., 197, 355 (2003)
  8. H. Winet and J. Bao, J. Biomed. Mater. Res., 40, 567 (1998) https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<567::AID-JBM8>3.0.CO;2-D
  9. R. Langer, Acc. Chem. Res., 33, 94 (2000) https://doi.org/10.1021/ar9800993
  10. L. C. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, J. P. Vacanti, R. Langer, and A. G. Mikos, Biomaterials, 21, 1595 (2000) https://doi.org/10.1016/S0142-9612(00)00048-X
  11. R. Bhardwaj and J. Blanchard, Int. J. Pharm., 170, 109 (1998) https://doi.org/10.1016/S0378-5173(98)00149-5
  12. L. Calandrelli, G. De Rosa, M. E. Errico, M. I. La Rotonda, P. Laurienzo, M. Malinconico, A. Oliva, and F. Quaglia, J. Biomed. Mater. Res., 62, 244 (2002) https://doi.org/10.1002/jbm.10138
  13. T. W. Chung, Y. Y. Huang, and Y. Z. Liu, Int. J. Pharm., 212, 161 (2001) https://doi.org/10.1016/S0378-5173(00)00548-2
  14. E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, Polym. Degrad. Stab., 80, 403 (2003) https://doi.org/10.1016/S0141-3910(02)00372-5
  15. R. Miyoshi, N. Hashimoto, K. Koyanagi, Y. Sumihiro, and T. Sakai, Int. Polym. Proc., 11, 320 (1996) https://doi.org/10.3139/217.960320
  16. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003) https://doi.org/10.1021/bm034247a
  17. J. V. Seppala, A. O. Helminen, and H. Korhonen, Macromolecular Bioscience, 4, 208 (2004) https://doi.org/10.1002/mabi.200300105
  18. H.-J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Biomacromolecules, 3, 1233 (2002) https://doi.org/10.1021/bm025581u
  19. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  20. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 90, 4836 (2001) https://doi.org/10.1063/1.1377023
  21. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Physical Review Letters, 90, 144502 (2003) https://doi.org/10.1103/PhysRevLett.90.144502
  22. S. Zarkoob, R. K. Eby, D. H. Reneker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004)
  23. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  24. X. H. Zong, S. F. Ran, D. F. Fang, B. S. Hsiao, and B. Chu, Polymer, 44, 4959 (2003) https://doi.org/10.1016/S0032-3861(03)00464-6
  25. X. H. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  26. S.-H. Lee, J.-W. Yoon, and M. H. Suh, Macromol. Res., 10, 282 (2002)
  27. H.-J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004) https://doi.org/10.1016/S0142-9612(03)00609-4
  28. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 45, 3701 (2004) https://doi.org/10.1016/j.polymer.2004.03.059
  29. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003) https://doi.org/10.1016/S0032-3861(03)00532-9
  30. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002)
  31. J. A. Matthews, E. D. Boland, G. E. Wnek, D. G. Simpson, and G. L. Bowlin. J. Bioact. Compat. Polym., 18, 125 (2003)
  32. E. E. Boland, J. A. Matthews, K. J. Pawlowski, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, Frontiers in Bioscience, 9, 1422 (2004)
  33. L. Huang, R. P. Apkarian, and E. L. Chaikof, Scanning, 23, 372 (2001)
  34. L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, J. Biomat. Sci.-Polym. E., 12, 979 (2001)
  35. W. K. Son, J. H. Youk, and W. H. Park, Biomacromolecules, 5, 197 (2004)
  36. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  37. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. Ko, J. Biomed. Mater. Res., 60, 613 (2002)
  38. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, J. Biomed. Mater. Res. Part A, 67A, 1105 (2003)
  39. M. Shin, O. Ishii, T. Sueda, and J. P. Vacanti, Biomaterials, 25, 3717 (2004)
  40. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. P. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004)
  41. Z. Zing, X. Y. Xu, X. S. Chen, Q. Z. Liang, X. G. Bian, L. X. Yang, and X. B. Jing, J. Control. Release, 92, 227 (2003)
  42. K. Kim, M. Yu, X. H. Zong, J. Chiu, D. F. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Biomaterials, 24, 4977 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  43. C. M. Hsu and S. Shivkumar, J. Mater. Sci., 39, 3003 (2004) https://doi.org/10.1023/B:JMSC.0000048767.92292.df
  44. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003)
  45. Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003)
  46. I. S. Lee, O. H. Kwon, W. Meng, I.-K. Kang, and Y. Ito, Macromol. Res., 12, 374 (2004)
  47. L. S. Nair, S. Bhattacharyya, and C. T. Laurencin, Expert Opinion on Biological Therapy, 4, 659 (2004)
  48. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003)
  49. H.-J. Jin, D. S. Kim, M. L. Kim, I. M. Lee, H. S. Lee, and J. S. Yoon, J. Appl. Polym. Sci., 81, 2219 (2001) https://doi.org/10.1002/app.1659
  50. H.-J. Jin, D. S. Kim, B. Y. Lee, M. N. Kim, I. M. Lee, H. S. Lee, and J. S. Yoon, J. Polym. Sci.; Part B: Polym. Phys., 38, 2240 (2000) https://doi.org/10.1002/1099-0488(20000901)38:17<2140::AID-POLB40>3.0.CO;2-N
  51. H.-J. Jin, B. Y. Lee, M. N. Kim, and J. S. Yoon, J. Polym. Sci.; Part B: Polym. Phys., 38, 1504 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000601)38:11<1504::AID-POLB100>3.0.CO;2-4
  52. H.-J. Jin, J. K. Park, K. H. Park, M. N. Kim, and J. S. Yoon, J. Appl. Polym. Sci., 77, 547 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<547::AID-APP10>3.0.CO;2-E
  53. M. Colonna, T. E. Banach, C. Beri, M. Fiorini, E. Marianucci, M. Messori, F. Pilati, and M. Toselli, Polymer, 44, 4773 (2003) https://doi.org/10.1016/S0032-3861(02)00728-0
  54. Y. Wan, W. Chen, J. Yang, J. Bei, and S. Wang, Biomaterials, 24, 2195 (2003) https://doi.org/10.1016/S0142-9612(02)00221-1
  55. S. I. Lee, S. C. Yu, and W. S. Lee, Polym. Degrad. Stab., 72, 81 (2001) https://doi.org/10.1016/S0141-3910(00)00160-9
  56. K. M. Huh and Y. H. Bae, Polymer, 40, 6147 (1999)
  57. Y. Teramoto and Y. Nishio, Polymer, 44, 2701 (2003)
  58. J. D. Stitzel, K. J. Pawlowski, G. L. Bowlin, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Biomater. Appl., 16, 22 (2001)
  59. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macromol. Sci.-Pure Appl. Chem., A38, 1231 (2001)
  60. W. Tan, R. Krishnaraj, and T. A. Desai, Tissue Eng., 7, 203 (2001) https://doi.org/10.1089/107632701300003241
  61. K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, Biochem. J., 316, 71 (1996)