Allyloxy-and Benzyloxy-Substituted Pyridine-bis-imine Iron(II) and Cobalt(II) Complexes for Ethylene Polymerization

  • Kim Il (Department of Polymer Science and Engineering, Pusan National University) ;
  • Han Byeong Heui (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim Jae Sung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 발행 : 2005.02.01

초록

A series of ethylene polymerization catalysts based on tridentate bis-imine ligands coordinated to iron and cobalt was reported. The ligands were prepared through the condensation of sterically bulky anilines with allyloxy-and benzyloxy-substituted 2,6-acetylpyridines. The pre-catalyst complexes were penta-coordinate species of the general formula $\{[(ArN=C(Me))_2(4-RO-C_5H_3N)]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; R=allyl, benzyl; M=Fe, Co). In the presence of ethylene and methyl alumoxane cocatalysts, these complexes were active for the polymerization of ethylene, with activities lower than those of metal complexes of the general formula $\{[(2-ArN=C(Me)_2C_5H_3N]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; M=Co, Fe), containing no substituents in 2,6-acetylpyridine ring. The effects of the catalyst structure and temperature on the polymerization activity, thermal properties, and molecular weight were discussed.

키워드

참고문헌

  1. G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White, and D. J. Williams, Chem. Commun., 849 (1998)
  2. A. M. A. Bennett, World Patent Application 98/27124 (1998)
  3. B. L. Small, M. Brookhart, and A. M. A. Bennet, J. Am. Chem. Soc., 120, 4049 (1998) https://doi.org/10.1021/ja9802100
  4. S. D. Ittel, L. K. Johnson, and M. Brookhart, Chem. Rev., 100, 1169 (2000) https://doi.org/10.1021/cr9804644
  5. B. L. Small and M. Brookhart, J. Am. Chem. Soc., 120, 7143 (1998) https://doi.org/10.1021/ja981317q
  6. W. Kaminsky, Angew. Makromol. Chem., 223, 101 (1994)
  7. F. Langhauser, J. Kerth, M. Kersting, P. Kiille, D. Lilge, and P. Miiller, Angew. Makromol. Chem., 223, 155 (1994) https://doi.org/10.1002/apmc.1994.052230111
  8. M. L. H. Green and N. Ishihara, J. Chem. Soc., Dalton Trans., 657 (1994)
  9. G. Erker and C. Mollenkopf, J. Organomet. Chem., 283, 173 (1994)
  10. H. G. Ah, W. Milius, and S. J. Palackel, J. Organomet. Chem., 472, 113 (1994) https://doi.org/10.1016/0022-328X(94)80198-3
  11. W. -M. Tsai and J. C. W. Chien, J. Polym. Sci.; Part A: Polym. Chem., 32, 149 (1994) https://doi.org/10.1002/pola.1994.080320117
  12. D. Fischer and R. Mulhaupt, Makromol. Chem. Phys., 195, 1443 (1994)
  13. M. Bochmann, S. J. Lancaster, M. B. Hursthouse, and K. M. A. Malik, Organometallics, 13, 2235 (1994) https://doi.org/10.1021/om00018a017
  14. G. Erker, C. Mollenkopf, M. Grehl, R. Frohlich, C. Kruger, R. Noe, and M. Riedel, Organometallics, 13, 1950 (1994) https://doi.org/10.1021/om00017a060
  15. Z. Guo, D. C. Swenson, and R. F. Jordan, Organometallics, 13, 1424 (1994) https://doi.org/10.1021/om00016a050
  16. B. Rieger, G. Jany, R. Fawzi, and M. Steimann, Organometallics, 13, 647 (1994) https://doi.org/10.1021/om00014a041
  17. G. Erker, M. Bendix, and R. Petrenz, Organometallics, 13, 456 (1994) https://doi.org/10.1021/om00014a018
  18. A. K. Rappe, W. M. Skiff, and C. J. Casewit, Chem. Rev., 100, 1435 (2000) https://doi.org/10.1021/cr9902493
  19. P. C. Mohring and N. J. Coville; J. Organomet. Chem., 479, 1 (1994)
  20. W. Kaminsky, R. Engehausen, K. Zoumis, W. Spaleck, and J. Rohrmann, Makromol. Chem., 193, 1643 (1992) https://doi.org/10.1002/macp.1992.021930708
  21. J. Tian and B. Huang, Makromol. Rapid Commun., 15, 923 (1994)
  22. N. Piccolrovazzi, P. Pino, G. Consiglio, A. Sironi, and M. Moret, Organometallics, 9, 3098 (1990) https://doi.org/10.1021/om00162a022
  23. I. -M. Lee, W. J. Gauthier J. M. Ball, B. Iyengar, and S. Collins, Organometallics, 11, 2115 (1992) https://doi.org/10.1021/om00037a002
  24. P. C. Mohring and N. J. Coville, J. Mol. Catal., 77, 41 (1992) https://doi.org/10.1016/0304-5102(92)80183-H
  25. P. C. Mohring, N. Vlachakis, N. E. Grimmer, and N. J. Coville, J. Organomet. Chem., 483 159 (1994) https://doi.org/10.1016/0022-328X(94)87159-0
  26. J. A. Ewen, L. Haspeslagh, M. J. Elder, J. L. Atwood, H. Zhang, and H. N. Cheng, in Transition Metals and Organometallics as Catalysts for Olefin Polymerization, W. Kaminsky and H. Sinn, Eds., Springer, Berlin, 1988, pp 281
  27. J. C. W. Chien and A. Razavi, J. Polym. Sci.; Part A: Polym. Chem., 26, 2369 (1988) https://doi.org/10.1002/pola.1988.080260910
  28. T. Mise, S. Miya, and H. Yamazaki, Chem. Lett., 1853 (1989)
  29. I. Kim, B. H. Han, J. G. Kim, H. S. Suh, and C. -S. Ha, Macromolecules, 36, 6689 (2003) https://doi.org/10.1021/ma0347060
  30. R. Chang, J. Polym. Sci., 8, 35 (1957) https://doi.org/10.1002/pol.1952.120080103