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ON THE STABILITY OF THE GENERALIZED
G-TYPE FUNCTIONAL EQUATIONS

GwaNGg Hul Kim

ABSTRACT. In this paper, we obtain the generalization of the Hyers-
Ulam-Rassias stability in the sense of Gavruta and Ger of the gener-
alized G-type functional equations of the form f(¢(z)) = I'(z) f(z).
As a consequence in the cases p(z) := z+p := £+ 1, we obtain the
stability theorem of G-functional equation : the reciprocal func-
tional equation of the double gamma function.

1. Introduction

In 1940, the stability problem raised by S. M. Ulam {15] was solved
by D. H. Hyers in [6]. The result of Hyers has been generalized to the
unbounded case by Th. M. Rassias [14], and this has been extended by
P. Gavruta [4] and R. Ger [5], respectively, as follows:

(Gdvruta’s sense). For a fixed function ¢ such as |E1(f) — F2(f)| < ¢,
there exists a function g such that E;(g) = E2(g) and |g(z) — f(z)] <
®(x) for some fixed function ®.

(Ger’s sense). For a fixed function 1 such as l‘g;g; — 1| < 9, there
£

exists a function g such that Ei(g) = Fa(g) and o < <
fixed functions « and 8.

Namely the result of Rassias is a special case of the type ¢ in the
stability in the sense of Gavruta.

The gamma function

< B for some

[(z) = /000 e~ ldt (x> 0)
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is a solution of the gamma functional equation g(z + 1) = zg(x), whose
stability is proved by S.-M. Jung ([8], [9]) and the author ([10], [11], [12],
[13]).

The G-function introduced by E.W. Barnes [2]

o k
Glz) = (2m) T e~ L7 -1 IT 1+ z-1 el E
k=1 k
does satisfy the equation G(z + 1) = I'(z)G(z), G(1) = T'(1) = 1, and
I'(z + 1) = zI'(z), where v is the Euler-Mascheroni’s constant defined
by v = limy, o (ZZ=1 % —logn) = 0.577215664 - - -.

The properties and values of G-function depend on those of the double
gamma function I';. Since the double gamma function I'y is defined
by the reciprocal of the G-function (see [2]), I'2(z) = 1/G(z), and its
functional equation can be written in the form I'y(z + 1) = T's(2)/T'(x).
Therefore the stability problem for the G-function is equivalent to that
for the reciprocal of the double gamma, function.

In this paper, we will investigate a generalization of the Hyers-Ulam
stability in the sense of Gavruta and Ger for the functional equations

(1.1) fle(z)) = D(z)f(z),
(1.2) f(z +p) =T(2)f (=),
(1.3) f(z +1) =T(z)f(z),

where ¢ is the given function, while f is the unknown function. The
equation (1.3) will be called the G-functional equation because its solu-
tion is the G-function.

In section 2, we will study the stability in the sense of Gavruta for the
functional equation (1.1), and as a consequence we obtain the stability
of the equations (1.2) and (1.3).

In section 3, the stability in the sense of Ger for the functional equa-
tion (1.1) will be investigated, and also its results imply the stability of
the equations (1.2) and (1.3).

Throughout this paper, let R, R+ and R, denote the set of real num-
bers, the set of all positive real numbers and the set of all nonnegative
real numbers, respectively. Each positive real number 4, p > 0 is fixed,
and ng is a given nonnegative integer. The functions € : Ry — R,,
¢ : Ry — Ry are defined. We put po(z) := = and ¢, (z) := @(pn-1(z))
for all positive integers n and all points z € R,..
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2. Stability in the sense of Gavruta

In this section, we will study the generalization of the Hyers-Ulam-
Rassias stability for the generalized G-function type functional equation
(1.1), and also we obtain the same stabilities for the equation (1.2) and
the G-functional equation (1.3) from the obtained result.

Let ¢ and € be given functions such that

—  &(pr(x))
2.1 wlz) = 00, Ve e R,.
@D el ) e o =

THEOREM 1. Let the functions ¢,¢€ satisfy the condition (2.1). If a
function f: Ry — R, satisfies the inequality

(2.2) 1/ (¢(@)) = T(z)f ()] < e(),

then there exists a unique solution g : Ry — R, of the equation
(1.1) such that

(2.3) l9(z) = f(z)] < w(z).

PROOF. For any x € R, and for every positive integer n, let wy, :
Ry — R, and g, : Ry — R, be the functions defined by

n—1

e(er(z)) f(en(x))
wplx) = nd n\T) 1= -1
@ IcZ::O [T IT(¢5(x))] wnd on(e) [T=0 I'(ep5(x))
for all x € R, respectively.
By (2.2), it follows that
|f(r<p(;x))) flz)] < E‘((Z))' for all =z € Ry.

Substituting ¢, (x) for  in this inequality, and then dividing both sides
of the resulting inequality by H;:Ol IT'(p;(z))], we get

£ — - 6(‘,0n(x))
(2.4) |gn+1(z) — gn(z)] < H?:O ]I‘(goj(x))]
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By induction on n we prove that

(2.5) |9n(z) — f(2)| < wn(z)

for all £ € R, and all positive integers n. For the case n = 1, the
inequality (2.5) is an immediate consequence of (2.2).

Assume that the inequality (2.5) holds true for some n. Then we
prove the inequality in (2.5) holds true for n + 1. This is an immediate
consequence of

lgn+1(2) = f(2)] < |gn+1(x) — gn(2)] + [gn(2) — f(2)]
< e(pn(z))
= ITj=o T(es(2))l

= wn41(T).

+ wn(m)

We claim that {g,(z)} is a Cauchy sequence. Indeed, by (2.4) and
(2.1), we have that, for n > m,

n—1
|gn(z) = gm(z)| < z |9k+1(z) — gk ()|

8(9% .0
a Z '—0 1T (e (:v))|

as m — 0o.
Hence, we can define a function g : Ry — R4 by

(2.6) g(z) := lim g,(z).
From the definition of g,,, we have g, (p(z)) = I'(x)gn+1(z) and there-

fore the function g satisfies (1.1).
We show from (2.5) that g satisfies the inequality (2.3) as follows:

9(2) = £(2)] = 1im |gn(z) — f(z)|

< lim wy(x)

n—oo

= w(x) Ve e Ry.
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If h: Ry — Ry is another such function, which satisfies (1.1) and
(2.3), then we have

n—1 1
l9(z) — h(z)| = |g(en(z)) — h(pn(x))] - Jl;[o T @)

n—1 1
< Y (n(2)) - H T(os @)l

o0

8( n (CL’)) . 1
< LT, Ko@) 1L M@

k
k=0 Hj:O ‘F(Son‘f‘](

o elen(@)
k; 1o IT(0;(z))]

for all x € R and all positive integers n, which tends to zero as n — oo,
since w(x) is bounded. This implies the uniqueness of g. O

Setting e(z) = 6 in Theorem 1, we have the Hyers-Ulam stability of
equation (1.1).
Let the functions ¢ satisfy

oo k

1
(2.7) p(z) = I;”];[O o @)l <oo VzeR,.

COROLLARY 1. Let ¢ satisfy condition (2.7). If a function f : R, —
R, satisfies the inequality

(2.8) £ (¢(z)) = T(2)f(x)] <6

for all x € R, then there exists a unique solution g : Ry — R, of the
equation (1.1) such that

(2.9) l9(z) — f(z)| < op(x).
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(1) STABILITY IN THE CASE ¢(x) = z + p OF THE EQUATION (1.1)

For a special case of the functional equation (1.1) with ¢(z) = z + p,
we obtain the equation (1.2). Then, we can obtain the same results for
the functional equation (1.2).

Putting ¢(z) = x+p in functional equation (1.1), the inequality (2.1)
implies the following inequality

2.10 W (z) = S ez + kp)
=10 ) ,;OHQLO IT(z + jp)|

THEOREM 2. Let ¢ satisfy condition (2.10). If a function f : Ry —
R satisfies the inequality
(2.11) [f(z+p) —T(2)f(z)] <e(x) Vx> mn,

then there exists a unique solution g : R, — R of the equation (1.1)
such that

(2.12) lg(z) — f(z)| <w'(z)  Vz > ng.
PROOF. Setting ¢(z) = 2 + p in Theorem 1, then the claimed result

of this theorem is satisfied except for the condition that replaces z € R
by x > ng. For this, we define the new function go : (ng, c0) — R by

go(z) = lim gn(z)

in substituting ¢ defined in (2.6) for go.
Now, we extend the function gg to the domain (0, co). We define for
each 0 < z < ny,

o) = kg_ol(a: + kp) ,
ano ['(z + np)
where k is the smallest natural number satisfying the inequalities =; +
kp; > ng for each 1.
Then, g(z + p) = I'(z)g(z) for all z > 0 and g(z) = go(x) for all
x > ng. Also the inequality

lg(z) — f(z)| < w'(z)
holds for all z > 0. 4

The following theorem is the Hyers-Ulam stability of the Eq. (1.2) as
a corollary of Theorem 2.
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COROLLARY 2. If a function f : Ry — R, satisfies the following
inequality
(2.12) f(s+p) ~T@)f(@)| <5 Yz > no.

Then there exists a unique solution g : Ry — Ry of the equation (1.2)

with
5 > L 1
9(2) - /@) < W{“;E—mwp)}'

In particular, if p > 1, the approzimate remainder is less then %{1 +

F(a:e—'rp) }
PROOF. Apply with e(xz) = ¢ in Theorem 1. O

(2) STABILITY OF G-FUNCTIONAL EQUATION

As a special case of the equation (1.1) with ¢(z) = = + 1 or the
equation (1.2) with p = 1, we obtain the G-functional equation (1.3),
which is the functional equation of the reciprocal of the double gamma
function.

COROLLARY 3. If a mapping f : Ry — R, satisfies the inequality
[f(+1) -T(x)f(z)| < e(z) Yz >n,

then there exists a unique solution g : R, — R, of the G-functional
equation (1.3) with

|f(z) — g(z)| Swg(x) Yz >mne,

where we(z) = Zk 0 HkE(er(I;)JrJ) < oo

CoOROLLARY 4. ([11]) If a mapping f : R — R, satisfies the
inequality
fz+1) -T@)f@)| <5 Va>no,

then there exists a unique solution g : Ry — R, of the G-functional
equation (1.3) with

|f(z) — g(@)] F(S—ZH% ﬁ Ya > ng.

k':O 7=0
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(3) EXAMPLES

We can find many examples. Namely it is enough to construct the
convergent series satisfying the condition (2.10) in Theorem 2. For ex-
ample,

Ex 1. All of the series Zk “o€ (m + kp) which are convergent.

Ex 2. All of the series Y-, &(z + kp) which are bounded.

Ex 3. All of the sequence {s( )} < 2!.3!-..n! where n is a natural
number. By ratio test, the desired condition holds.

Ex 4. As a special case £ > ng =1, p > 2, ¢(z) < I'(z), in particular,
if we put > 2, p =2, e(x) = ['(z), then the condition (2.10) implies

oy (@) I'(z +2) I'(z+4)
SO = 5 T2 T Tt 9t T
1 1

Tz " Ter@+2) &

3. Stability in the sense of Ger

The following theorem provides the stability in the sense of Ger for
the equation (1.1).

THEOREM 3. Let a function f : Ry — R, satisfy the inequality

flo(2))
I'(z) f(z)

where ¢ : Ry — (0,1) is a function such that

(3.1) | — 1] L e(x) Vz > ng,

[e o]

e )
3.2) alz Hl—-scpj and P(z Hl—i—scp]
=0

are bounded for all x > ny.
Then there exists a unique solution g : Ry — R, of the equation
(1.1) with

(3.3) a(z) < == < B(z) Yz > ng.
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ProoF. For any x € Ry and for every positive integer n, we define
n—1
) T £ent@).
izo Dlwps(2))

For all positive integers m,n with n > m, we have

In (.Q:) f(Som—I-l (x))

(3.4) 0m(@ ~ Tpm(@) fom@)
)
Mm@/ (omr1 (@)

F(on())

- Tena@)f(en1(@)
It also follows from (3.1) that

flpjq1(z))
v;(@)) flpi(z

for all z > ng and j =0,1,2,---. From (3.4) and (3.5), we get

(3.5) 0<1-e(p;(z)) < T ) < 1+e(p;(e))

1:[(1—6(901( 0 - _1:[1+s<p3
or

n-—-1

> " log(1 — e(j(x))) < log gn(x) — log gm ()

j=m

n—1
< " log(1 + (g (=)

Since 752, log(1 — e(i5())) = loga(z) and 24 log(1 + (g3 (@) =
log B(x),

it follows that

lim " log(1 ~ e(p;(2)))

j=m

= lim " log(1 +(p;(2))) =0

j=m
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by the boundedness of a, 8. Hence, we note that {log g,(z)} is a Cauchy
sequence for all z > ng. It is reasonable to define a function gy : Ry —
R+ by
(3.6) go(z) = @ = lim g, (z) Yz > ng,
n—oo
where L(z) := lim,_, o log gn(z).
Thus the function gg satisfies the equation (1.1), that is,

(3.7)
90(p(x)) = lim gn(p(2)) = lim I'(z)gn+1(z) = T(2)go(x) Yz > no.
Since
gn(z) _ flp(z)) f(p2(2)) . flen(z))

f@) " T@)f(z) Tle@)fle(z)) Tlpn-1(@)) fon-1(z))’
we get

n—1

38) [0l f[ L+ ey
3=0 3=0

for all z € R.. Due to (3.6), (3.8), and the definitions of o, B as
n — 00, we obtain the required result (3.3).

Assume h : Ry — R, is another solution of equation (1.1) which
satisfies inequality (3.3). By (3.7), we have

g(2) _ 9(pn(@)) _ glen(@) flon(z)
h(z)  h(pn(z))  flon(z)) R(pn(z))
for any = > ng and for any natural number n.
Hence, we have

a(pn(@) _ (@) _ Blpn(@)
Blon(@) = h(z) = alpn(@))

for any natural number n. By the boundedness of the series ¢,

oo

a(pn(@)) = [T —elps(2)) — 1

j=n

as n — oo. and similarly S(p,(z)) — 1 as n — oo.
Therefore, it is obvious that h(z) = go(x). The extension of the
domain from (ng, o) to Ry follows the proof of the Theorem 2. O
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COROLLARY 5. Let n > 0 be given. If a function f : Ry — Ry
satisfies the inequality

4]
I'(z) f(z) zttn
where ¢ : Ry — (0,1) is a function such that o(z) := [[;24(1 —
W‘-)S)I—M) and B(z) := HJ o1+ W%) are bounded for all x > ny,
then there exists a unique solution g : R, — R, of the equation
(1.1) such that for any x > max{n, 6ﬁ}

VY > ng,

a(z) < EASIN B(zx).

flz) ~
COROLLARY 6. Let a function f: Ry — R, satisfy the inequality
flz+p)
<
T(2) (@) —1| <e(x) Yz > ng,

where € : Ry — (0, 1) is a function such that

Iﬂl—dm+ﬂm and B(z IIl+€x+ﬂU

j=0

are bounded for all x > ny.
Then there exists a unique solution g : Ry — R, of the equation
(1.2) with
(z)

(z

@

a(z) <

< B(z).

~
SN’

COROLLARY 7. Let n > 0 be given. If a function f : Ry — R4
satisfies the inequality

flz+p)
T @ =

then there exists a unique solution g : Ry — R of the equation (1.2)

1 Vo > no,

such that for any x > max{ny, 5%}

\./

a(z) < %sﬁ(),
) an

\./

where a(z) := [[720(1 — i Blz) = [152(1 + G::%Tﬁ)-
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CoroLLARY 8. ([11]) Let a function f : Ry — R, satisfy the

inequality
flx+1)
= — 1| <e(z V& > ng,
where € : Ry — (0,1) is a function such that
e o]
afzx) : H (1—e(x+3)) and PB(z): H(1+s :v+j))

7=0 7=0

are bounded for all z > ng
Then there exists a unique G-function g : Ry — R satisfying (1.3)
with
(z)

(z

COROLLARY 9. ([11]) Let n > 0 be given. If a mapping f : Ry —
R satisfies the inequality

flz+1) 1 ]
L()f(z) 7 at+n

then there exists a unique G-function g : Ry — R, satisfying (1.3)

)

a(z) <

< B(z).

~
g

Vx > ng,

with such that for any x > max{n, 51"17}

@ < 1) sy
< —= (,’1;') <e

where a(z) = [[720(1 - ﬁm) and B(z) = [[;24(1 + (“,c—ﬂé)—l;;;)

1

ProoF. Ifz > §T7, then H;’;O(l—m%—i—ﬁ) and H;’;O(l-i—(zﬂ%)
converge, respectively. Applying Corollary 8 with £(z) = x{%n, we get
the desired result. O

(4) EXAMPLES
We take that ¢ : Ry — (0,1) is a function such that

e o]
(3.9) Zs (x +79) < +o0.
7=0
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Then the condition (3.9) implies that [[72(1 +¢(x + jq)) converges.
Hence, we can define the functions a, 8 for all x € R, such that 0 <
a(z) = [[720(1 —e(z+39)) < [T;20(1 +e(z +5q)) := B(z) < +00, that
is, these series are bounded.

This property gives us the following examples derived from Corollary
6 withz=1,q=1.

Ex 5. e(1+j) =
converges for p > 1.

(1+J)P for p > 1. Note that the p—series Y oo, kp

EX 6. e(1+j) Note that 5.5

= 1 -
R j=0 (1+y)' o

Ex 7. Let e(1+j) = G2, or e(1+5) = GH. Then we see that
)1+j

Z?io e(l+7) = Z;‘io (1—_&; or Z;x;() e(l+3j) = Z;‘io (_11+j

converge by the alternating series test.
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