DOI QR코드

DOI QR Code

SOME RESULTS ON CONVERGENCE IN DISTRIBUTION FOR FUZZY RANDOM SETS

  • JOO SANG YEOL (Department of Statistics Kangwon National University) ;
  • CHOI GYEONG SUK (Institute of Basic Science Kangwon National University) ;
  • KWON JOONG SUNG (Department of Mathematics Sun Moon University) ;
  • KIM YUN KYONG (Department of Information & Communication Engineering Dongshin University)
  • Published : 2005.01.01

Abstract

In this paper, we first establish some characterization of tightness for a sequence of random elements taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in $R^P$. As a result, we give some sufficient conditions for a sequence of fuzzy random sets to converge in distribution.

Keywords

References

  1. Z. Artstein, Weak convergence of set-valued functions and control, SIAM J. Control Optim. 13 (1975), 865-878 https://doi.org/10.1137/0313052
  2. P. Billingsley, Convergence of probability measures, Second Edition, Wiley, New York, 1999
  3. D. Butnariu, Measurability concepts for fuzzy mappings, Fuzzy Sets and Systems 31 (1989), 77-82 https://doi.org/10.1016/0165-0114(89)90068-7
  4. A. Colubi, J. S. Domingeuz-Menchero, M. Lopez-Diaz and D. Ralescu, A $D_E$ [0, 1] representation of random upper semicontinuous functions, Proc. Amer. Math. Soc. 130 (2002), 3237-3242. https://doi.org/10.1090/S0002-9939-02-06429-8
  5. Y. Feng, Mean-square integral and differential of fuzzy stochastic processes, Fuzzy Sets and Systems 102 (1999), 271-280 https://doi.org/10.1016/S0165-0114(97)00119-X
  6. S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590 https://doi.org/10.1006/jmaa.2000.6820
  7. S. Y. Joo and Y. K. Kim, Weak convergence and tightness for fuzzy random variables (submitted)
  8. Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002), 105-109 https://doi.org/10.1016/S0165-0114(01)00121-X
  9. S. Li and Y. Ogura, Fuzzy random variables, conditional expectations and fuzzy martingales, J. Fuzzy Math. 4 (1996), 905-927
  10. S. Li, Y. Ogura and H. T. Nguyen, Gaussian processes and martingales for fuzzy-valued variables with continuous parameter, Inform. Sci. 133 (2001), 7- 21 https://doi.org/10.1016/S0020-0255(01)00074-3
  11. Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214 https://doi.org/10.1137/1101016
  12. M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 402-422
  13. G. Salinetti and R. Wets, On the convergence in distribution of measurable mul- tifunctions(random sets), normal integrands, stochastic processes and stochastic infima, Math. Oper. Res. 11 (1986), 385-419 https://doi.org/10.1287/moor.11.3.385
  14. G. Wang and Y. Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992), 161-178 https://doi.org/10.1016/0165-0114(92)90189-B
  15. H. C. Wu, The central limit theorems for fuzzy random variables, Inform. Sci. 120 (1999), 239-256 https://doi.org/10.1016/S0020-0255(99)00063-8
  16. Y. Yoshida, M. Yasuda, J. Nakagami and M. Kurano,, Optimal stopping problem in a stochastic and fuzzy system, J. Math. Anal. Appl. 246 (2000), 135-149 https://doi.org/10.1006/jmaa.2000.6771
  17. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. The Concepts of Tightness for Fuzzy Set Valued Random Variables vol.9, pp.2, 2009, https://doi.org/10.5391/IJFIS.2009.9.2.147