References
- Z. Artstein, Weak convergence of set-valued functions and control, SIAM J. Control Optim. 13 (1975), 865-878 https://doi.org/10.1137/0313052
- P. Billingsley, Convergence of probability measures, Second Edition, Wiley, New York, 1999
- D. Butnariu, Measurability concepts for fuzzy mappings, Fuzzy Sets and Systems 31 (1989), 77-82 https://doi.org/10.1016/0165-0114(89)90068-7
-
A. Colubi, J. S. Domingeuz-Menchero, M. Lopez-Diaz and D. Ralescu, A
$D_E$ [0, 1] representation of random upper semicontinuous functions, Proc. Amer. Math. Soc. 130 (2002), 3237-3242. https://doi.org/10.1090/S0002-9939-02-06429-8 - Y. Feng, Mean-square integral and differential of fuzzy stochastic processes, Fuzzy Sets and Systems 102 (1999), 271-280 https://doi.org/10.1016/S0165-0114(97)00119-X
- S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590 https://doi.org/10.1006/jmaa.2000.6820
- S. Y. Joo and Y. K. Kim, Weak convergence and tightness for fuzzy random variables (submitted)
- Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002), 105-109 https://doi.org/10.1016/S0165-0114(01)00121-X
- S. Li and Y. Ogura, Fuzzy random variables, conditional expectations and fuzzy martingales, J. Fuzzy Math. 4 (1996), 905-927
- S. Li, Y. Ogura and H. T. Nguyen, Gaussian processes and martingales for fuzzy-valued variables with continuous parameter, Inform. Sci. 133 (2001), 7- 21 https://doi.org/10.1016/S0020-0255(01)00074-3
- Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214 https://doi.org/10.1137/1101016
- M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 402-422
- G. Salinetti and R. Wets, On the convergence in distribution of measurable mul- tifunctions(random sets), normal integrands, stochastic processes and stochastic infima, Math. Oper. Res. 11 (1986), 385-419 https://doi.org/10.1287/moor.11.3.385
- G. Wang and Y. Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992), 161-178 https://doi.org/10.1016/0165-0114(92)90189-B
- H. C. Wu, The central limit theorems for fuzzy random variables, Inform. Sci. 120 (1999), 239-256 https://doi.org/10.1016/S0020-0255(99)00063-8
- Y. Yoshida, M. Yasuda, J. Nakagami and M. Kurano,, Optimal stopping problem in a stochastic and fuzzy system, J. Math. Anal. Appl. 246 (2000), 135-149 https://doi.org/10.1006/jmaa.2000.6771
- L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- The Concepts of Tightness for Fuzzy Set Valued Random Variables vol.9, pp.2, 2009, https://doi.org/10.5391/IJFIS.2009.9.2.147