References
- A. Banyaga, Sur la structure du groupe des diffeomorphismes qui preservent une forme symplectique, Comm. Math. Helv. 53 (1978), 174-227 https://doi.org/10.1007/BF02566074
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics I, Math. Z. 200, (1989), 355-378 https://doi.org/10.1007/BF01215653
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics II, Math. Z. 203, (1989), 553-569 https://doi.org/10.1007/BF02570756
- M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001), 93-141 https://doi.org/10.1007/s002220100161
- A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), 575-611 https://doi.org/10.1007/BF01260388
- A. Floer and H. Hofer, Symplectic homology I, Math. Z. 215 (1994), 37-88 https://doi.org/10.1007/BF02571699
- H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh 115 (1990), 25-38
- F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999), 369-385 https://doi.org/10.1007/s002220050289
- J. Marsden and J. Ratiu, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in 'The Breadth of Stmplectic and Poisson Geometry', Progr. Math. 232 (2004), 525-570 ed., Birkhouser
- Y.-G. Oh, Symplectic topology as the geometry of action functional, I, J. Differential Geom. 46 (1997), 499-577 https://doi.org/10.4310/jdg/1214459976
- Y.-G. Oh, Symplectic topology as the geometry of action functional, II, Comm. Anal. Geom. 7 (1999), 1-55 https://doi.org/10.4310/CAG.1999.v7.n1.a1
- Y.-G. Oh, Chain level Floer theory and Hofer's geometry of the Hamiltonian dif- feomorphism group, Asian J. Math. 6 (2002), 799-830, math.SG/0104243
- L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhauser, 2001
- P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184 https://doi.org/10.1002/cpa.3160310203
- M. Schwarz, On the action spectrum for closed symplectically aspherical mani- folds, Pacific J. Math. 193 (2000), 419-461 https://doi.org/10.2140/pjm.2000.193.419
-
P. Seidel,
$\pi_1$ of symplectic diffeomorphism groups and invertibles in quantum homology rings, GAFA (1997), 1046-1095 - C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685-710 https://doi.org/10.1007/BF01444643
Cited by
- Calabi quasi-morphisms for some non-monotone symplectic manifolds vol.6, pp.1, 2006, https://doi.org/10.2140/agt.2006.6.405
- Hamiltonian Floer homology for compact convex symplectic manifolds vol.57, pp.2, 2016, https://doi.org/10.1007/s13366-015-0254-6
- CONTINUOUS HAMILTONIAN DYNAMICS AND AREA-PRESERVING HOMEOMORPHISM GROUP OF D2 vol.53, pp.4, 2016, https://doi.org/10.4134/JKMS.j150288