DOI QR코드

DOI QR Code

미세노즐을 통한 액적형성에 관한 수치적 연구

Numerical Study on Drop Formation Through a Micro Nozzle

  • 김성일 (서강대학교 대학원 기계공학과) ;
  • 손기헌 (서강대학교 기계공학과)
  • 발행 : 2005.02.01

초록

The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satellite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.

키워드

참고문헌

  1. Fromm, J. E., 1984, 'Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets,' IBM J. Research Development, Vol. 28, pp. 323-333
  2. Shield, T. W., Bogy, D. B. and Talke, F. E., 1987, 'Drop Formation by DOD Inkjet Nozzles: a Comparison of Experiment and Numerical Simulation,' IBM J. Research Development, Vol. 31, pp. 96-110 https://doi.org/10.1147/rd.311.0096
  3. Asai, A., Hara, T. and Endo, I., 1988, 'One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers,' Japanese J. Applied Physics, Vol. 26, pp. 1794-1801 https://doi.org/10.1143/JJAP.26.1794
  4. Chen, P. H., Chen, W. C., Ding, P. P. and Chang, S. H., 1998, 'Droplet Formation of a Thermal Sideshooter Inkjet Printhead,' Int. J. Heat and Fluid Flow, Vol. 19, pp. 382-390 https://doi.org/10.1016/S0142-727X(98)10007-3
  5. Liou, T. M., Shih, K. C., Chau, S. W. and Chen, S. C., 2002, 'Three-Dimensional Simulations of the Droplet Formation During the Inkjet Printing Process,' Int. Comm. Heat Mass Transfer, Vol. 29, pp. 1109-1118 https://doi.org/10.1016/S0735-1933(02)00439-6
  6. Wu, H. C., Hwang, W. S. and Lin, H. J., 2004, 'Development of a Three-Dimensional Simulation System for Micro-Inkjet and its Experimental Verification,' Materials Science and Engineering, Vol. 373, pp. 268-278 https://doi.org/10.1016/j.msea.2004.01.043
  7. FLOW-3D, 2003, version 8.2, flow science Inc.
  8. Kothe, D. B., Mjolsness, R. C. and Torrey, M. D., 1991, RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces, Technical Report LA-12007-MS, LANL, Los Alamos, NM
  9. Sussman, M., Smereka, P. and Osher, S., 1994, 'A Level Set Approch for Computing Solution to Incompressible Two-Phase Flow,' J. Comput. Phys., Vol. 114, pp. 146-159 https://doi.org/10.1006/jcph.1994.1155
  10. Son, G., 2001, 'Numerical Simulation of Bubble Motion During Nucleate Boiling,' Trans. of the KSME (B), Vol. 25, No.3, pp. 389-396
  11. Son, G., 2001, 'A Numerical Method for Bubble Motion with Phase Change,' Numerical Heat Transfer, Part B, Vol. 39, pp. 509-523 https://doi.org/10.1080/104077901750188868
  12. Dennis, S. C. R. and Chang, G. Z., 1970, 'Numerical Solution for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100,' J. Fluid Mech., Vol. 42, pp. 471-489 https://doi.org/10.1017/S0022112070001428
  13. Fornberg, B., 1980, 'A Numerical Study of Steady Viscous Flow Past a Circular Cylinder,' J. Fluid Mech., Vol. 98, pp. 819-855 https://doi.org/10.1017/S0022112080000419