시설재배 참외의 생육과 토양 특성에 미치는 인산석고의 효과

Effects of Phosphogypsum on the Growth of Oriental Melon and Soil Properties

  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University)
  • 투고 : 2005.10.06
  • 심사 : 2005.10.25
  • 발행 : 2005.12.30

초록

인산 제조공정에서 생산되는 부산물인 인산석고는 시설재배지 토양 pH의 조정과 칼슘을 포함한 여러가지 필수 무기영양원소를 공급하는 면에서 토양 개량제나 양분급원의 일종으로 그 효과를 발휘할 수 있을 것이다. 인산석고를 참외에 시용한 결과, 초기 생육 상황을 기준으로 판단해 볼 때 고토석회 처리구와 비교하여 우선 가시적으로 매우 현저한 생육 촉진 효과를 보였으며, 두 차례의 생육 조사 결과에서도 이러한 효과가 입증되었다. 토양 산성화, 염류장해, 유해금속 문제 등 인산석고가 유발할 수 있는 것으로 우려한 문제는 참외 재배 하우스 토양에서 나타나지 않았으며 작물생육에 관련된 부작용 또한 발생하지 않았다. 현재까지 나타난 참외에 대한 인산석고의 효과는 Ca의 원활한 공급 외 다른 원인은 아직 구명하기 어려우나, 적절한 시용 수준에서의 인산석고의 농업적 재활용은 충분히 부작용 없이 가능한 것으로 판단되었으며, Ca 공급 측면과 시설재배지 토양에서 pH를 과도하게 증가시키는 석회를 대체할 수 있을 것으로 판단된다.

Although phosphogypsum can have profound effects on both the physical and chemical properties of certain soils with supplying the essential elements, no widespread use of by-product phosphogypsum will be made unless such uses pose no threat to the public health and soil contaminations. This study was conducted to evaluate the effects of phosphogypsum on the growth of oriental melon and soil properties in plastic film house. Phosphogypsum was treated at the rate of $70kg\;CaO\;10a^{-1}$ and the effects were compared with the treatment of Ca-Mg carbonate. In the treatment of phosphogypsum, early growth of oriental melon was significantly increased comparing to the growth in the Ca-Mg carbonate treatment. Total fruit yield was not different between the treatments of phosphogypsum and Ca-Mg carbonate, but marketable fruit yield was higher in the phosphogypsum treatment. Although Ca and S contents in oriental melon were increased in the phosphogypsum treatment, contents of toxic heavy metals including As, Cd, Cr, Cu, and Pb were not different between the two treatments. Also, soil pH and contents of extractable toxic metals in the soil were not significantly different between the two treatments after the experiment. These results suggest that phosphogypsum can be a valuable substitute for lime materials in high pH soils of plastic film house.

키워드

참고문헌

  1. Baker, D. E., and M. C. Amacher. 1982. Nickel, copper, zinc, and cadmium. p. 323-336. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
  2. Chung, J. B., S. C. Kang, and S. Park. 2001. Short-term effect of phosphogypsum on soil chemical properties. Korean J. Environ. Agric. 20:317-324
  3. Chung, J. B., H. J. Cho, and S. J. Jin. 2002. Extractable heavy metals in phosphogypsum. Korean J. Environ. Agric. 21:223-228 https://doi.org/10.5338/KJEA.2002.21.3.223
  4. Giordano, P. M., J. J. Mortvedt, and D. A. Mays. 1975. Effect of municipal wastes on crop yield and uptake of heavy metals. J. Environ. Qual. 4:394-399 https://doi.org/10.2134/jeq1975.00472425000400030024x
  5. Ha, H. S., W. K. Kang, and Y. B. Lee. 2000. Effects of fly ash and fly ash-phosphogypsum mixture on crop growth and quality. p. 49-66. In Proceedings of the 2000 symposium of environmental impact on the quality and safety of the agricultural products. Yungnam Branch of the Korean Society of Agricultural Chemistry, Jinju, Korea
  6. Lee, H. J., J. S. Cho, W. K. Lee, and J. S. Heo. 1997. Effects of municipal sewage and industrial waste water sludge composts on chemical properties of soil and growth of com plant. Korean J. Environ. Agric. 16:220-226
  7. Loveday, J. 1974. Recognition of gypsum-responsive soils. Aust. J. Soil Res. 12:87-96 https://doi.org/10.1071/SR9740087
  8. Mays, D. A., and J. J. Mortvedt. 1983. Crop response to soil applications of phosphogypsum. J. Environ. Qual. 15:78-81 https://doi.org/10.2134/jeq1986.00472425001500010018x
  9. Mehlich, A., and G. P. Tewari. 1974. The roles of gypsum (calcium sulphate) in agriculture. US Gypsum Co., Chicago, IL, USA
  10. Miller, W. P. 1995. Environmental considerations in land application of by-product gypsums. p. 183-208. In D. L. Karlen et al. (ed.) Agricultural utilization of urban and industrial byproducts. ASA Spec. Publ. 58. ASA, CSSA and SSSA, Madison, WI, USA
  11. Miller, W. P., and M. E. Sumner 1997. Agricultural and industrial uses of by-product gypsum. p. 226-239. In J. E. Rechcigl and H. C. Mackinnon (ed.) Agricultural uses of by-products and wastes. ACS, Washington DC, USA
  12. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  13. Shainberg, I., M. E. Sunmer, W. P. Miller, M. P. W. Farina, M. A. Pavan, and M. V. Fey. 1989. Use of gypsum on soils: A review. Adv. Soil Sci. 9:1-111
  14. Sposito, G. 1989. The chemistry of soils. Oxford University Press, New York, NY, USA
  15. Toma, M., M. E. Sunmer, G. Weeks, and M. Saigusa. 1999. Longterm effects of gypsum on crop yield and subsoil chemical properties. Soil Sci. Soc. Am. J. 39:891-895