Predicting Water Movement in the Soil Profile of Corn Fields with a Computer-Based STELLA Program to Simulate Soil Water Balance

토양수분 수지계산에 의한 옥수수 포장에서의 토양수분 이동 예측

  • Kim, Won-Il (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Jung, Goo-Bok (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jong-Sik (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Jin-Ho (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Shin, Joung-Du (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Gun-Yeob (Agricultural Environment and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Huck, M.G. (Department of Natural Resource and Environmental Science, Univ. of Illinois)
  • 김원일 (농업과학기술원 환경생태과) ;
  • 정구복 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 신중두 (농업과학기술원 환경생태과) ;
  • 김건엽 (농업과학기술원 환경생태과) ;
  • Received : 2005.06.15
  • Accepted : 2005.07.30
  • Published : 2005.08.30

Abstract

A simplified one-dimensional model STELLA was used to predict soil water movement in lllinois corn fields using soil water balance sheets. It offered the potential to increase understanding of soil nitrate and agrochemical leaching process. The model accounted for aU possible annual inputs and outputs of water from a closed ecosystem as represented by corn fields. Water inputs included precipitation, while outputs included runoff, transpiration, evaporation and drainage. To run the model required daily inputs of two climatic data measurements such as daily precipitation and pan evaporation. Vertical water flow through the soil profile was calculated with first order equation including the difference in hydraulic conductivity and matric potential at the various soil types. The output results included daily changes of water content in the soil layers and daily amount of water losses including run-off, percolation, transpiration. This model was verified using Illinois corn field data for the soil water content measured by neutron scattering methods through 1992 to 1994 growing seasons. Approximately 22 to 78% of simulated water contents agreed with the measured values and their standard deviation, depending on soil types, whereas 30 to 70% of simulated water values agreed with the measured values and their standard deviations depending on soil layers.

단순1차원 STELLA 모델이 토양수분 수지계산에 의해 일리노이 옥수수 포장의 질소용탈을 예측하기 위하여 개발되었다. 이는 옥수수포장이라는 한정된 생태계 안에서의 물의 연간 유입량과 유출량을 산정하는데 물의 유입에는 강우량과 유출에는 유거, 증발산 및 배수량이 계산되었다. 모델에는 일일강우량과 증산량 등 2개의 기상자료가 이용되었고, 토양의 다양한 전환상수들이 토양의 물리화학성을 고려하여 일차식으로 계산되어 이용되었다. 모델의 결과는 토층에 따른 토양수분의 일일 변화량과 손실량이 산출된다. 모델에 의한 물 수지는 강우가 많았던 1993년은 늘어난 반면 강우가 적었던 1992년과 1994년에는 줄어들었다. 또한 유기물과 점토가 많은 토양에서 수분의 유출량이 적었다. 모델에 의한 토양 수분함량은 표준편차를 고려한 측정치와 토양통에 따라 22-78%, 토층에 따라 30-70%의 일치를 보였고, 이러한 불일치는 토양수분과 질소화합물의 확산 등 수평적 이동, 다른 형태의 질소 손실, 뿌리의 분포, 영농 형태 및 토양의 여러 특성들이 고려되지 않은 1차원 모델이기 때문이라 사료된다.

Keywords

References

  1. Campbell, G. S. 1991. Simulation of water uptake by plant roots. In J. Hanks and J. T. Ritchie (ed.) Modeling plant and soil systems. Agronomy 31. ASA, Madison, WI, USA
  2. Hagin, J. and E. Welte. 1984. Nitrogen dynamic, model verification and practical application. Erich Glotze Drck, Gttingcn, Germany
  3. Hanks, R. G. 1991a. Infiltration and redistribution. In J. Hanks and J. T. Ritchie (ed.) Modeling plant and soil systems. Agronomy 31. ASA, Madison, WI, USA
  4. Hanks, R. G. 1991b. Soil evaporation and transpiration. In J. Hanks and J. T. Ritchie (ed.) Modeling plant and soil systems. Agronomy 31. ASA, Madison, WI, USA
  5. Hanks, R. G., and G. L. Ashcroft. 1980. Applied soil physics: Soil water and temperature applications. Springer-Verlag, New York, NY, USA
  6. Hillel, D. 1982. Introduction to soil physics. Academic Press Inc., New York, NY, USA
  7. Illinois Agronomy Handbook. 1995-1996. Cooperative Extension Service Circular 1333. College of Agriculture, University of Illinois, Urbana-Champaign, IL, USA
  8. Kim, W. I., G. B. Jung, M. H. Koh, M. G. Huck, and R. D. Park. 2002. Effects of soil types and tillage systems on soil water movement in the root zone of com fields. Korean J. Soil Sci. Fert. 35:197-206
  9. Peters, D. B., and L. J. Bartelli. 1958. Soil moisture characteristics. College of Agriculture, University of lllinois. Urbana-Champaign, Illinois, USA
  10. Peterson, S., and B. Richmond. 1994. STELLA II technical documentation. High Performance Systems, Hanover, NH, USA
  11. Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50:1031-1036 https://doi.org/10.2136/sssaj1986.03615995005000040039x
  12. Tanji, K. K., and M. N. E. Din. 1991. Nitrogen solute transport. In J. Hanks and J. T. Ritchie (ed.) Modeling plant and soil systems. Agronomy 31. ASA, Madison, WI, USA
  13. Williams, J. R. 1991. Runoff and water erosion. In J. Hanks and J. T. Ritchie (ed.) Modeling plant and soil systems. Agronomy 31. ASA, Madison, WI, USA