논토양에서 규산질 비료 시용에 의한 질소 시비 저감수준 평가

Reducing Nitrogen Fertilization Level of Rice (Oryza sativa L.) by Silicate Application in Korean Paddy Soil

  • 이창훈 (경상대학교 대학원 응용생명과학부) ;
  • 양민석 (경상대학교 대학원 응용생명과학부) ;
  • 장기운 (충남대학교 생물환경화학과) ;
  • 이용복 (경상대학교 대학원 응용생명과학부) ;
  • 정기열 (영남농업연구소 식물환경과) ;
  • 김필주 (경상대학교 대학원 응용생명과학부)
  • Lee, Chang-Hoon (Division of Applied Life Science, Gyeongsang National University) ;
  • Yang, Min-Suk (Division of Applied Life Science, Gyeongsang National University) ;
  • Chang, Ki-Woon (Department of Agricultural Chemistry, Chungnam National University) ;
  • Lee, Yong-Bok (Division of Applied Life Science, Gyeongsang National University) ;
  • Chung, Ki-Yeol (Plant Environment Division, Yeongnam Agricultural Research Institute) ;
  • Kim, Pil-Joo (Division of Applied Life Science, Gyeongsang National University)
  • 투고 : 2005.06.15
  • 심사 : 2005.08.01
  • 발행 : 2005.08.30

초록

본 연구에서는 규산질 비료 시용을 통한 질소의 흡수 이용율을 증진하고 이용율 증진에 따른 질소 시비량 저감방안을 모색하였다. 경남 하동 소재의 전형적 논토양(가천통)에서 규산 처리수준에 따른 질소 이용을 증진효과를 평가하기 위해 무처리, 유효규산 $130mg\;kg^{-1}$ 조절 처리, 조절량의 2배 처리와 같은 세 수준의 규산처리를 기본처리구로 설정하였다. 각 규산 처리조건에서 0, 110, $165kg\;ha^{-1}$의 세 수준으로 질소를 처리하여 벼 재배과정 중 수량반응특성 및 양분흡수특성을 조사하였다. 동일수준의 질소 처리조건에서 정조 수량과 질소이용률은 규산질 비료 처리수준이 증가함에 따라 유의적으로 크게 증가되었다. 규산질 비료를 처리하지 않았을 때 질소 $154kg\;ha^{-1}$ 수준에서 최고 정조 수량 획득이 가능하였다. 규산질 비료를 추천량인 $130mg\;kg^{-1}$과 추천량의 배 량 처리시 벼의 생육증가에 따른 질소 흡수 이용율 증가로 약 76과 $52kg\;ha^{-1}$의 질소처리조건에서 규산 무처리 때 얻을 수 있는 최고 정조 수량의 획득이 가능한 것으로 분석되었다. 결과적으로 규산질 비료처리 없이 얻을 수 있는 최고 정조수량을 얻기 위해 필요한 질소 시비량인 $154kg\;ha^{-1}$을 규산질 비료 추천량과 추천량의 배량 처리로 인해 약 76과 $102kg\;ha^{-1}$의 질소 시비량 저감이 각각 가능할 것으로 분석되었다. 그리고 규산질 비료시용으로 토양 pH가 다소 개선되었으며, 토양 내 유효 인산 및 규산 함량이 크게 증가하여 토양의 비옥도 증진에 효과가 있는 것으로 조사되었다.

Silicate (Si) fertilizers are well-known for soil amendment and to improve rice productivity as well as nitrogen efficiency. In this study, we investigated the possible reduction level of nitrogen fertilization for rice cultivation by amending Si fertilizer application. Field experiments were carried out to evaluate the productivity of rice (Oryza sativa L.) on a silt loam soil, where three levels of nitrogen (0, 110 and $165kg\;ha^{-1}$) were selected and Si fertilizer as a slag type was applied at 0, 1 and 2 times of the recommendation level (available $SiO_2\;130mg\;kg^{-1}$). Application of Si fertilizer increased significantly the rice yield and nitrogen efficiency. With increasing N uptake of rice, 1 and 2 times of recommended levels of Si fertilization could decrease nitrogen application level to about 76 and $102kg\;N\;ha^{-1}$ to produce the target yield, the maximum yield in the non-Si amended treatment. Silicate fertilizer improved soil pH and significantly increased available phosphate and Si contents. Conclusively, the Si fertilizer could be a good alternative source for soil amendment, restoring the soil nutrient balance and to reduce the nitrogen application level in rice cultivation.

키워드

참고문헌

  1. Agaric, S., W. Agata, F. Kubota, and P. B. Kaufman. 1992. Physiological roles of silicon in photosynthesis and dry matter production in rice plants, Japan J. Crop Sci. 61: 200-206 https://doi.org/10.1626/jcs.61.200
  2. Allison, L. E. 1965. Organic carbon. p. 1367-1376. In C. A. Black (ed.) Methods of soil analysis. Part II. Am. Soc. of Agron. Inc. Publ., Madison, WI, USA
  3. Deren, C. W., L. E. Datnoff, G. H. Snyder, and F. G. Marin. 1994. Silicon concentration, disease, and yield components of rice genotypes grown on flooded organic histosols. Crop Sci. 34:733-737 https://doi.org/10.2135/cropsci1994.0011183X003400030024x
  4. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. 91:11-17
  5. Islam, A., and R. C. Saha. 1969. Effects of silicon on the chemical composition of rice plants, Plant Soil 30:447-457
  6. Kang, Y. S., J. H. Lee, J. I. Kim, and J. S. Lee. 1997. Influence of silicate application on rice grain quality. Korean J. Crop Sci. 42:800-804
  7. Lee Y. B., H. S. Ha, B. K. Park, J. S. Cho, and P. J. Kim. 2002. Effect of a fly ash and gypsum mixture on rice cultivation. Soil Sci. Plant Nutr. 48:171-178 https://doi.org/10.1080/00380768.2002.10409188
  8. Lee, K. S. 1997. Study of nitrogen dynamics from rice cultivated paddy soil. p. 703-710. In Annual Research Report in 1997. Parts of Agricultural Environment and Bioresoruce. NIAST, RDA, Suwon, Korea
  9. Lian, S. 1976. Silica fertilization of rice. p. 197-220. In The fertility of paddy soils and fertilizer application for rice. Food fertilizer technology center, Taipei, Taiwan
  10. Little, T. M., and J. J. Hills. 1978. Agricultural experimentation; design and analysis. John Wiley, Chichester, West Sussex, UK
  11. Mengel, K., and E. A. Kirkby. 1987. Further elements of importance. p. 577-582. Principle of Plant Nutrition, 4th ed. IPI Bern, Switzerland
  12. Okuda, A., and E. Takahashi. 1964. The role of silicon. p. 123-146. In The mineral nutrition of the rice plant. John Hopkins Press, Baltimore, MD, USA
  13. Osuna-Canizalez, F. J., DeDatta, S. K., and J. M. Bonman. 1991. Nitrogen form and silicon nutrition effects on resistance to blast disease of rice. Plant Soil 135:223-231 https://doi.org/10.1007/BF00010910
  14. Park, C. S. 1970. Studies on the relation between available silica content and then effect of silicate, the distribution pattern of silica content and requirement in Korean paddy to soil. Research report of office of rural development, Plant Environment 13:1-27
  15. Park, C. S. 1979. Fertility management of flooded rice soil: A proposal to minimize the biological production potentialperformance gap of high yielding varieties. J. Korean Soc. Soil Sci. Fert. 12:153-167
  16. Park, C. S. 2001. Past and future advances in silicon research in the republic of Korea. p. 359-371. In L. E. Datnoff et al. (ed.) Silicon in agriculture. Elsevier, New York, NY, USA
  17. Park, Y. H. 1999. National survey of fertilization situation in a farming field. p. 641-652. In Annual Research Report of 1999. Parts of Agricultural Environment and Bioresoruce. NIAST, RDA, Suwon, Korea
  18. Raupach, M., and C. S. Piper. 1959. Interactions of silicate and phosphate in a lateritic soil. Aust. J. Agric. Res. 10:106-116
  19. RDA. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  20. RDA. 1995. Standard investigation methods for agriculture experiment. Rural Development Administration, Suwon, Korea
  21. RDA. 1999. Fertilization standard of crop plants. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  22. Roy, A. C., M. Y. Ali, R. L. Fox, and J. A. Silva. 1971. Influence of calcium silicate on phosphate solubility and availability in Hawaiian latosols. p. :757-765. In Proc. Int. Symp. on Soil Fertility Evaluation. New Delhi, India
  23. Setter, T. L., E. V. Laureles, and A. M. Mazaredo. 1997. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crop. Res. 49:95-106 https://doi.org/10.1016/S0378-4290(96)01058-1
  24. Shariatmadari, H., and A. R. Mermut. 1999.Magnesium- and silicon-induced phosphate in smectite-, palygorskite-, and sepiolite-calcite systems. Soil Sci. Soc. Am. J. 63:1167-1173 https://doi.org/10.2136/sssaj1999.6351167x
  25. Snyder, G. H., D. B. Jones, and G. J. Gascho. 1986. Silicon fertilization of rice on Everglades Histosols. Soil Sci. Soc. Am. J. 50:1259-1263 https://doi.org/10.2136/sssaj1986.03615995005000050035x
  26. Takahashi, E., J. F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2:99-102
  27. Yoshida, S., S. A. Navasero, and E. A. Ramirez. 1969. Effects of silica and nitrogen suplly on some leaf characters of the rice plant. Plant Soil 31:48-56 https://doi.org/10.1007/BF01373025
  28. Yoshida, S. 1975. The physiology of silicon in rice. Tech. Bull. No. 25. Food and Fertilizer Technology Center, Taipei, Taiwan