Changes in Polyamine and Tyramine Concentrations in Rice (Oryza sativa L.) during Maturation and Preharvest Sprouting

벼 등숙기와 수발아 기간동안 폴리아민과 티라민의 농도변화

  • Kim, Tae-Wan (Department of Plant Resources Science, Hankyong National University) ;
  • Kim, Jae-Hun (Department of Agronomy, Korea University) ;
  • Hwang, Seon-Woong (Environmental Management Division, National Institute of Highland Agriculture) ;
  • Hong, Byuong-Hee (Department of Agronomy, Korea University) ;
  • Lee, Sang-Eun (Department of Plant Resources Science, Hankyong National University) ;
  • Yun, Seung-Gil (Department of Plant Resources Science, Hankyong National University) ;
  • An, Jae-Ho (Department of Environmental Engineering, Hankyong National University)
  • 김태완 (한경대학교 식물자원과학과) ;
  • 김재헌 (고려대학교 식량자원과학과) ;
  • 황선웅 (농촌진흥청 고령지농업연구소) ;
  • 홍병희 (고려대학교 식량자원과학과) ;
  • 이상은 (한경대학교 식물자원과학과) ;
  • 윤승길 (한경대학교 식물자원과학과) ;
  • 안재호 (한경대학교 환경공학과)
  • Received : 2005.01.15
  • Accepted : 2005.02.07
  • Published : 2005.02.28

Abstract

The levels of polyamines were measured to investigate the alternative nitrogen metabolism during maturation and sprouting in rice. The rice plants (cv. Ansanbyeo) were cultivated in 20-year-old non-fertilized field. The flag leaves and spikes were collected weekly after the earing stage and the seeds were harvested daily after lodging. Free, bound, and conjugated polyamines were analyzed using reverse phase HPLC. Putrescine, spermidine, spermine, agmatine and tyramine were the major amines found in rice. The level of stress-induced amine, putrescine increased during the preharvest sprouting confirming that the process was a stress to the plants. With all other polyamines, tyramine in free form decreased in flag leaves and panicles during seed maturation. However, agmatine in bound form showed a noticeable increase about 8-fold during 6 weeks period of maturation after which it declined to the bottom level. Among the individual amines, tyramine and spermine in conjugated form showed a marked change during matutation and sprouting. Interestingly, the level of tyramine with all conjugated polyamine decreased in spikes during seed maturation and increased during preharvest sprouting implying that tyrosine decarboxyation and conjugation to phenolic acids may play a key role in preharvest sprouting. Spermine in conjugated form was synthesized only at the early earing stage in the level of $3.4mole\;g^{-1}$ fresh weight, and then decreased to the level of nmole during maturation. Thereafter, it dramatically increased to 2.8 mole during preharvest sprouting. In this study we found the tyramine is a major amine in rice, and it would play a critical role in N-assimilation during seed maturation and sprouting.

벼의 등숙기 및 수발아 동안 질소대사의 변화를 밝히기 위해 질소순환대사 중의 폴리아민 농도 변화를 측정하였다. 20년간 무비재배한 포장에 안산벼를 재배하여 지엽과 종실을 출수 후 1주일 간격으로 채취하였고, 또한 도복 후 종실을 매일 채취하여 분석시료로 사용하였다. 채취 시료의 유리형(遊離形)과 결합형(結合形) 및 부착형(附着形) 폴리아민을 HPLC이용 분석하였다. Putrescine, spermidine, spermine, agmatine, tyramine이 벼에서 발견되는 주요 아만류 였다. 불량환경에서 생합성이 유도되는 아민류인 putrescine의 함량은 수발아 기간동안 현저히 증가하였다. 벼 등숙기 동안 tyramine은 다른 폴리아민과 마찬가지로 종실과 지엽에서 감소하였다. 그러나 부착형 agmatine의 경우 처음 6주간 현저한 증가를 보이다가, 그 이후에는 낮은 수준으로 감소하였다. 등숙기간과 수발아 동안 여러 종류 중 부착형 tyramine과 spermine의 함량이 가장 크게 변화하였다. 흥미롭게도 모든 부착형 폴리아민과 tyramine의 함량은 종실비대기에 감소하였던 반면, 수발아시에는 증가하였다. 이것은 수발아 기간동안 tyrosine 탈탄산반응과 페농화합물의 부착화작용이 중요반응기작일 수 있다는 것을 암시하였다. 부착형 spermine은 출수초기에 생체중 g 당 3.4 mole 수준으로 합성되었다가 비대기 내내 nmol 수준으로 감소하였으며, 지속되는 수발아 진행과정에서 다시 생체중 g 당 2.8 mole로 급격히 증가하였다. 결론적으로 벼의 등숙기간 동안 질소동화에서 결정적인 역할을 하는 아민류는 tyramine이라는 것이 밝혀졌다.

Keywords

References

  1. Bewley, J. D. 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066 https://doi.org/10.1105/tpc.9.7.1055
  2. Borg Oliver, O.. and B. Monties. 1993. Lignin, suberin, phenoilc acids and tyramine in the suberized, wound induced potato periderm. Phytochem. 32:601-606 https://doi.org/10.1016/S0031-9422(00)95143-4
  3. DiTomoso, J. M., J. J. Hart, D. L. Linscott, and L. V. Kochian 1992. Effects of inorganic cations and metabolic inhibitors on putrescine transport in roots of intact mauze seedlings. Plant Physiol. 99:508-514 https://doi.org/10.1104/pp.99.2.508
  4. Evans, P. T, and R. L. Malmberg 1989. Do polyamines have roles in plant development? Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:235-69 https://doi.org/10.1146/annurev.pp.40.060189.001315
  5. Facchini, P. J., M. Yu, and C. Penzes-Yost. 1999. Decreased cell wall digestibility in canola transformed with chimeric tyrosine decarboxylase genes from opium poppy. Plant Physiol. 120:653-663 https://doi.org/10.1104/pp.120.3.653
  6. Hou, W. C., and Y. H. Lin. 1997. Polyamine-bound trypsin ihhibitors in sweet potato (Ipomoea batatas L. Lam cv. Tainong 57) storage roots, sprouted roots and sprouts. Plant Science 126:11-19 https://doi.org/10.1016/S0168-9452(97)00076-9
  7. Kim T W., and G. Heinrich. 1995. Strontium metabolism in higher plants: Effect of strontium on the polyamine biosynthesis during germination of wheat (Triticum aestivum L.). Korean J. Environ. Agric.14:55-71
  8. Kyriakidis, D. A. 1983. Effect of plant growth hormones on ornithine decarboxylase activity during the germination of barley seeds. Physiol. Plant. 57:499-504 https://doi.org/10.1111/j.1399-3054.1983.tb02775.x
  9. Lee, T M., H. S. Lur, and C. Chu. 1997. Roles of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. Plant Sci. 126: 1-10 https://doi.org/10.1016/S0168-9452(97)00076-9
  10. Lin, P. P. C. 1984. Polyamine metabolism and its relation to response of the aleurone layers of barley seeds to gibberellic acid. Plant Physiol. 74:975-983 https://doi.org/10.1104/pp.74.4.975
  11. Martin Tanguy. J. 1997. Conjugated polyamines and reproductive development: biochemical. molecular and physiological approaches. Physiol. Plant. 100:675-688 https://doi.org/10.1111/j.1399-3054.1997.tb03074.x
  12. Mukhopadhyay, A., M. M. Choudhuri, K. Sen, and B. Ghosh. 1983. Changes in polyamines and related enzymes with loss of viability in rice seeds. Phytochem. 22: 1527-1551 https://doi.org/10.1016/0031-9422(83)80086-7
  13. Nigrel, J.. and P. Jeandet. 1987. Metabolism of tyramine and feruloyltyramine in TMV inoculated leaves of Nicotiana tabacum. Phytochem. 26:2185-2190 https://doi.org/10.1016/S0031-9422(00)84681-6
  14. Pears, G.. P. A. Marchand, J. Grisworld, N. G. Lewis, and C A. Ryan. 1998. Phytochem. 47:659-664 https://doi.org/10.1016/S0031-9422(97)00620-1
  15. Protacio. M. C, R. Daiy, and H. E. Flores. 1990. Polyamines and ethylene. American Society of Plant Biologists, Rockville, MD, USA
  16. Reggiani, R.. and A. Bertani. 1989. Effects of decreasing oxygen concentration on polyamine metabolism in rice and wheat. J. Plant Physiol. 135:375-377 https://doi.org/10.1016/S0176-1617(89)80137-3
  17. Reggiani, R., P. Giussani, and A. Bertani, 1990. Relationship between the accumulation of putrescine and the tolerance to oxygen deficit stress in Gramineae seedlings. Plant Cell Physiol. 31:489-494
  18. Roy, M., and B. Ghosh. 1996. Polyamines, both common and uncommon, under heat stress in rice (Oryza saliva) callus. Physiol. Plant. 98: 196-200 https://doi.org/10.1111/j.1399-3054.1996.tb00692.x
  19. Smith, M. A., and P. J. Davies. 1985. Effects of photoperiod on polyamine metabolism in apical buds of g-2 peas in relation to the induction of apical senescence. Plant Physiol. 79:400-405 https://doi.org/10.1104/pp.79.2.400
  20. Smith, T. A. 1985. Polyamines. Ann. Rev. Plant Physiol. 36:117-143 https://doi.org/10.1146/annurev.pp.36.060185.001001
  21. Sung, H. I., L. F. Liu, and C. H. Kao. 1994. The induction of aamylase activity by sucrose-starvation in suspension cultured rice cells is regulated by polyamines. Physiol. Plant. 41: A7
  22. Tiburcio, A. F, T. Altabella, A. Borrell, and C. Masgrau. 1997. Polyamine metabolism and its regulation. Physiol. Plant. 100:664-674 https://doi.org/10.1111/j.1399-3054.1997.tb03073.x
  23. Villanueva. V. R., R. C. Adlakha, and A. M. Cantera Soler. 1978. Changes in polyamine concentration during seed germination. Phytochem.17:1245-1249 https://doi.org/10.1016/S0031-9422(00)94565-5
  24. Walden, R., A. Cordeiro, and A. F. Tibrucio. 1997. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol. 113:1009-1013 https://doi.org/10.1104/pp.113.4.1009
  25. Wanasundard, P. K. J. P. D., F. Shahidi, and M. E. Brosnan. 1999. Changes in flax (Linum usitatissmum) seed nitrogenous compounds during germination. Food Chem. 65:289-296 https://doi.org/10.1016/S0308-8146(98)00176-9
  26. Weidner, S., J. Paprocka, B. Kamieniecki, and R. Zademowski. 1992. The role of phenolic acids in dormancy of barley caryopses. p. 200-223. In Pre harvest sprouting in cereals. American Association of Cereal Chemists. St. Paul, MN, USA
  27. Williams, R. D., and R. E. Hoagland. 1982. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci. 30:206-212